满分5 > 高中数学试题 >

已知函数f(x)=x2-1与函数g(x)=alnx(a≠0). (I)若f(x)...

已知函数f(x)=x2-1与函数g(x)=alnx(a≠0).
(I)若f(x),g(x)的图象在点(1,0)处有公共的切线,求实数a的值;
(II)设F(x)=f(x)-2g(x),求函数F(x)的极值.
(I)先判定点(1,0)与函数f(x),g(x)的图象的位置关系,然后分别求出在x=1处的导数,根据函数f(x),g(x)的图象在点(1,0)处有公共的切线,建立等量关系,求出a的值; (II)先求出F(x)的解析式和定义域,然后在定义域内研究F(x)的导函数,讨论a的正负,分别判定F'(x)=0的值附近的导数符号,确定极值. 【解析】 (I)因为f(1)=0,g(1)=0, 所以点(1,0)同时在函数f(x),g(x)的图象上(1分) 因为f(x)=x2-1,g(x)=alnx,f'(x)=2x,(3分)(5分) 由已知,得f'(1)=g'(1),所以,即a=2(6分) (II)因为F(x)=f(x)-2g(x)=x2-1-2alnx(x>0)(7分) 所以(8分) 当a<0时,因为x>0,且x2-a>0,所以F'(x)>0对x>0恒成立, 所以F(x)在(0,+∞)上单调递增,F(x)无极值(10分) 当a>0时,令F'(x)=0,解得(舍)(11分) 所以当x>0时,F'(x),F(x)的变化情况如下表: (13分) 所以当时,F(x)取得极小值,且.(14分) 综上,当a<0时,函数F(x)在(0,+∞)上无极值; 当a>0时,函数F(x)在处取得极小值a-1-alna.
复制答案
考点分析:
相关试题推荐
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O为圆心,且标有20元、10元、0元的三部分区域面积相等.假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.
(I)若顾客甲消费了128元,求他获得优惠券面额大于0元的概率?
(II)若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率?
查看答案
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,manfen5.com 满分网),其部分图象如图所示.
(I)求f(x)的解析式;
(II)求函数manfen5.com 满分网在区间manfen5.com 满分网上的最大值及相应的x值.
查看答案
若点集A={(x,y)|x2+y2≤1},B={(x,y)|-1≤x≤1,-1≤y≤1},则
(1)点集P={(x,y)|x=x1+1,y=y1+1,(x1,y1)∈A}所表示的区域的面积为   
(2)点集M={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积为    查看答案
已知程序框图如图所示,则执行该程序后输出的结果是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.