满分5 > 高中数学试题 >

已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为,且点(1,)在该椭圆上. ...

已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为manfen5.com 满分网,且点(1,manfen5.com 满分网)在该椭圆上.
(I)求椭圆C的方程;
(II)过椭圆C的左焦点F1的直线l与椭圆C相交于A,B两点,若△AOB的面积为manfen5.com 满分网,求圆心在原点O且与直线l相切的圆的方程.
(1)设出椭圆的标准方程,根据离心率求得a和c关系,进而根据a2=b2+c2,求得a和b的关系,把点C坐标代入椭圆方程求得a,进而求得b,则椭圆方程可得. (2)先看当l与与x轴垂直时,可求得A,B的坐标,进而求得三角形AOB的坐标,不符合题意;再看直线l斜率存在时,设出直线方程,与椭圆方程联立消去y,设A(x1,y1),B(x2,y2),进而求得x1+x2和x1x2的表达式,进而表示出|AB|,进而求得圆的半径后表示出三角形AOB的面积,求得k,进而求得圆的半径,则圆的方程可得. 【解析】 (I)设椭圆C的方程为,由题意可得, 又a2=b2+c2,所以 因为椭圆C经过(1,),代入椭圆方程有 解得a=2 所以c=1,b2=4-1=3故椭圆C的方程为. (Ⅱ)当直线l⊥x轴时,计算得到:, ,不符合题意. 当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),k≠0 由,消去y,得(3+4k2)x2+8k2x+4k2-12=0 显然△>0成立,设A(x1,y1),B(x2,y2), 则, 又 = = 即 又圆O的半径 所以 化简,得17k4+k2-18=0,即(k2-1)(17k2+18)=0, 解得(舍) 所以,,故圆O的方程为:.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2-1与函数g(x)=alnx(a≠0).
(I)若f(x),g(x)的图象在点(1,0)处有公共的切线,求实数a的值;
(II)设F(x)=f(x)-2g(x),求函数F(x)的极值.
查看答案
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O为圆心,且标有20元、10元、0元的三部分区域面积相等.假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.
(I)若顾客甲消费了128元,求他获得优惠券面额大于0元的概率?
(II)若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率?
查看答案
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,manfen5.com 满分网),其部分图象如图所示.
(I)求f(x)的解析式;
(II)求函数manfen5.com 满分网在区间manfen5.com 满分网上的最大值及相应的x值.
查看答案
若点集A={(x,y)|x2+y2≤1},B={(x,y)|-1≤x≤1,-1≤y≤1},则
(1)点集P={(x,y)|x=x1+1,y=y1+1,(x1,y1)∈A}所表示的区域的面积为   
(2)点集M={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.