满分5 > 高中数学试题 >

如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点...

manfen5.com 满分网如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:
(1)直线EF∥面ACD;
(2)平面EFC⊥面BCD.
(1)根据线面平行关系的判定定理,在面ACD内找一条直线和直线EF平行即可,根据中位线可知EF∥AD,EF⊄面ACD,AD⊂面ACD,满足定理条件; (2)需在其中一个平面内找一条直线和另一个面垂直,由线面垂直推出面面垂直,根据线面垂直的判定定理可知BD⊥面EFC,而BD⊂面BCD,满足定理所需条件. 证明:(1)∵E,F分别是AB,BD的中点. ∴EF是△ABD的中位线,∴EF∥AD, ∵EF⊄面ACD,AD⊂面ACD,∴直线EF∥面ACD; (2)∵AD⊥BD,EF∥AD,∴EF⊥BD, ∵CB=CD,F是BD的中点,∴CF⊥BD 又EF∩CF=F,∴BD⊥面EFC, ∵BD⊂面BCD,∴面EFC⊥面BCD
复制答案
考点分析:
相关试题推荐
如图所示,正方体ABCD-A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,垂足为点H,有下列三个命题:
①点H是△A1BD的中心;
②AH垂直于平面CB1D1
③AC1与B1C所成的角是90°.
其中正确命题的序号是   
manfen5.com 满分网 查看答案
在正四棱锥P-ABCD中,PA=manfen5.com 满分网AB,M是BC的中点,G是△PAD的重心,则在平面PAD中经过G点且与直线PM垂直的直线有    条. 查看答案
已知m,n是直线,α、β、γ是平面,给出下列命题:
①α⊥γ,β⊥γ,则α∥β;
②若n⊥α,n⊥β,则α∥β;
③若n⊄α,m⊄α且n∥β,m∥β,则α∥β;
④若m,n为异面直线,n⊂α,n∥β,m⊂β,m∥α,则α∥β.
则其中正确的命题是    .(把你认为正确的命题序号都填上) 查看答案
如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足    时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
manfen5.com 满分网 查看答案
已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a⊂α,b⊂β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.