满分5 > 高中数学试题 >

沿海地区某农村在2002年底共有人口1480人,全年工农业生产总值为3180万元...

沿海地区某农村在2002年底共有人口1480人,全年工农业生产总值为3180万元.从2003年起计划10年内该村的总产值每年增加60万元,人口每年净增a人,设从2003年起的第x年(2003年为第一年)该村人均产值为y万元.
(1)写出y与x之间的函数关系式;
(2)为使该村的人均产值年年都有增长,那么该村每年人口的净增不能超过多少人?
(1)据人均产值=,列出y与x的关系 (2)法一是利用单调递增函数的定义,设出有大小的两自变量得到其函数值的大小,列出不等式求出a的范围. 方法二是先将函数分离常数,再利用函数是增函数,得到分子小于0,列出不等式求出a的范围. (1)【解析】 依题意得第x年该村的工农业生产总值为(3180+60x)万元, 而该村第x年的人口总数为(1480+ax)人, ∴y=(1≤x≤10). (2)解法一:为使该村的人均产值年年都有增长,则在1≤x≤10内,y=f(x)为增函数. 设1≤x1<x2≤10,则 f(x1)-f(x2)=- = =. ∵1≤x1<x2≤10,a>0, ∴由f(x1)<f(x2),得88800-3180a>0. ∴a<≈27.9.又∵a∈N*,∴a=27. 解法二:∵y=() =[1+], 依题意得53-<0,∴a<≈27.9. ∵a∈N*,∴a=27. 答:该村每年人口的净增不能超过27人.
复制答案
考点分析:
相关试题推荐
在一次人才招聘会上,有A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%.设某人年初被A、B两家公司同时录取,试问:
(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?
(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元)?并说明理由.
查看答案
某商场预计全年分批购入每台价值为2000元的电视机共3600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入所有的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比,比例系数为k(k>0),若每批购入400台,则全年需用去运输和保管总费用43600元.
(1)求k的值;
(2)现在全年只有24000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.
查看答案
某地区上年度电价为0.8元/kW•h,年用电量为akW•h,本年度计划将电价降到0.55元/kW•h至0.75元/kW•h之间,而用户期望电价为0.4元/kW•h经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为K).该地区电力的成本为0.3元/kW•h.
(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;
(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%?
(注:收益=实际用电量×(实际电价-成本价))
查看答案
“依法纳税是每个公民应尽的义务”.国家征收个人所得税是分段计算的,总收入不超过800元,免征个人所得税,超过800元部分需征税,设全月纳税所得额为x,x=全月总收入-800元,税率见下表:
级数全月纳税所得额税率
1不超过500元的部分5%
2超过500元至2000元的部分10%
3超过2000元至5000元的部分15%
9超过10000元的部分45%
(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;
(2)某人2000年10月份总收入3000元,试计算该人此月份应缴纳个人所得税多少元;
(3)某人一月份应缴纳此项税款26.78元,则他当月工资总收入介于______
A.800~900元         B.900~1200元
C.1200~1500元       D.1500~2800元.
查看答案
(1)一种产品的年产量原来是a件,在今后m年内,计划使年产量平均每年比上一年增加p%,写出年产量随经过年数变化的函数关系式.
(2)一种产品的成本原来是a元,在今后m年内,计划使成本平均每年比上一年降低p%,写出成本随经过年数变化的函数关系式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.