用a,b,c,d四个不同字母组成一个含n+1(n∈N
+)个字母的字符串,要求由a开始,相邻两个字母不同.例如n=1时,排出的字符串是ab,ac,ad;n=2时排出的字符串是aba,abc,abd,aca,acb,acd,ada,adb,adc,…,如图所示.记这含n+1个字母的所有字符串中,排在最后一个的字母仍是a的字符串的种数为a
n.
(1)试用数学归纳法证明:
;
(2)现从a,b,c,d四个字母组成的含n+1(n∈N
*,n≥2)个字母的所有字符串中随机抽取一个字符串,字符串最后一个的字母恰好是a的概率为P,求证:
.
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,点M是棱PC的中点,AM⊥平面PBD.
(1)求PA的长;
(2)求棱PC与平面AMD所成角的正弦值.
查看答案
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.求证:ED
2=EB•EC.
查看答案
已知函数
(a>0,a≠1),
(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
(2)设函数g(x)=f(-x),x∈[-2,+∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.
查看答案
已知数列{a
n}的通项公式为a
n=2+
(n∈N
*).
(1)求数列{a
n}的最大项;
(2)设b
n=
,试确定实常数p,使得{b
n}为等比数列;
(3)设m,n,p∈N
*,m<n<p,问:数列{a
n}中是否存在三项a
m,a
n,a
p,使数列a
m,a
n,a
p是等差数列?如果存在,求出这三项;如果不存在,说明理由.
查看答案
设圆C
1:x
2+y
2-10x-6y+32=0,动圆C
2:x
2+y
2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求证:圆C
1、圆C
2相交于两个定点;
(Ⅱ)设点P是椭圆
上的点,过点P作圆C
1的一条切线,切点为T
1,过点P作圆C
2的一条切线,切点为T
2,问:是否存在点P,使无穷多个圆C
2,满足PT
1=PT
2?如果存在,求出所有这样的点P;如果不存在,说明理由.
查看答案