分两种情况考虑:当2x-1大于等于0时,根据非负数的绝对值等于它本身化简不等式后,求出不等式的解集并与2x-1大于等于0求出公共解集即可得到x的范围;当2x-1小于0时,根据负数的绝对值等于它的相反数化简不等式后,求出不等式的解集与2x-1小于0求出公共解集即可得到x的范围,将求出x的两范围求出并集即可得到原不等式的解集.
【解析】
①当2x-1≥0即x≥时,
不等式化为:x+3>2x-1,
解得:x<4,此情况下的解集为:[-,4);
②当2x-1<0即x时,
不等式化为:x+3>1-2x,
解得:x>-,此情况下的解集为:(-,).
综上,原不等式的解集为:[-,4)∪(-,)=(-,4).
故答案为:(-,4)