满分5 > 高中数学试题 >

已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=...

已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.
(Ⅰ)求异面直线PA与CD所成的角的大小;
(Ⅱ)求证:BE⊥平面PCD;
(Ⅲ)求二面角A-PD-B的大小.

manfen5.com 满分网
(1)由于直线PA与CD不在同一平面内,要把两条异面直线移到同一平面内,做AF∥CD,异面直线PA与CD所成的角与AF与PA所成的角相等. (2)由三角形中等比例关系可得BE⊥PD,由于CD=BD=得,BC=2,可知三角形BCD为直角三角形,即CD⊥DB.同时利用勾股定理也可得CD⊥PD,即可得CD⊥平面PDB.即CD⊥BE,即可得证. (3)连接AF,交BD于点O,则AO⊥BD.过点O作OH⊥PD于点H,连接AH,则AH⊥PD,则∠AHO为二面角A-PD-B的平面角. 【解析】 (Ⅰ)取BC中点F,连接AF,则CF=AD,且CF∥AD, ∴四边形ADCF是平行四边形,∴AF∥CD, ∴∠PAF(或其补角)为异面直线PA与CD所成的角(2分) ∵PB⊥平面ABCD,∴PB⊥BA,PB⊥BF. ∵PB=AB=BF=1,∴AB⊥BC,∴PA=PF=AF=. (4分) ∴△PAF是正三角形,∠PAF=60° 即异面直线PA与CD所成的角等于60°. (5分) (Ⅱ)在Rt△PBD中,PB=1,BD=,∴PD= ∵DE=2PE,∴PE= 则,∴△PBE∽△PDB,∴BE⊥PD、(7分) 由(Ⅰ)知,CF=BF=DF,∴∠CDB=90°. ∴CD⊥BD、又PB⊥平面PBD,∴PB⊥CD、 ∵PB∩BD=B,∴CD⊥平面PBD,∴CD⊥BE (9分) ∵CD∩PD=D,∴BE⊥平面PCD、(10分) (Ⅲ)连接AF,交BD于点O,则AO⊥BD、 ∵PB⊥平面ABCD,∴平面PBD⊥平面ABD,∴AO⊥平面PBD、 过点O作OH⊥PD于点H,连接AH,则AH⊥PD、 ∴∠AHO为二面角A-PD-B的平面角. (12分) 在Rt△ABD中,AO=. 在Rt△PAD中,AH=. (14分) 在Rt△AOH中,sin∠AHO=. ∴∠AHO=60°. 即二面角A-PD-B的大小为60°. (15分)
复制答案
考点分析:
相关试题推荐
通讯中,发报方常采取重复发送同一信号的办法来减少在接收中可能发生的错误,.假定发报机只发0和1两种信号,接收时发生错误的情况是:“发0收到1”或“发1收到0”,它们发生的概率都是0.05.
(Ⅰ)若一个信号连续发2次,接收时“两次信号相同”,接收方接收信号;否则不接收,则接收方接收一个信号的概率是多少?
(Ⅱ)若一个信号连续发3次,按“少数服从多数”的原则接收,则正确接收一个信号的概率是多少?
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=1.
(Ⅰ)求证:A=B;
(Ⅱ)求边长c的值;
(Ⅲ)若|manfen5.com 满分网+manfen5.com 满分网|=manfen5.com 满分网,求△ABC的面积.
查看答案
数列{an}满足递推式an=3an-1+3n-1(n≥2),又a1=5,则使得manfen5.com 满分网为等差数列的实数λ=    查看答案
已知函数manfen5.com 满分网,直线l1:9x+2y+c=0.若当x∈[-2,2]时,函数y=f(x)的图象恒在直线l的下方,则c的取值范围是    查看答案
抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.