满分5 > 高中数学试题 >

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=...

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求直线BF和平面BCE所成角的正弦值.

manfen5.com 满分网
(1)取CE的中点G,由三角形的中位线性质证明四边形GFAB为平行四边形,得到AF∥BG,从而证明AF∥平面BCE. (2)通过证明AF⊥CD,DE⊥AF,从而证明AF⊥平面CDE,再利用BG∥AF证明BG⊥平面CDE,进而证明平面BCE⊥平面CDE. (3)在平面CDE内,过F作FH⊥CE于H,由平面BCE⊥平面CDE,得 FH⊥平面BCE,故∠FBH为BF和平面BCE所成的角,解Rt△FHB求出∠FBH的正弦值. (1)证明:取CE的中点G,连FG、BG. ∵F为CD的中点,∴GF∥DE且. ∵AB⊥平面ACD,DE⊥平面ACD, ∴AB∥DE,∴GF∥AB. 又,∴GF=AB. ∴四边形GFAB为平行四边形,则AF∥BG. ∵AF⊄平面BCE,BG⊂平面BCE, ∴AF∥平面BCE. (2)证明:∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD. ∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF. 又CD∩DE=D,故AF⊥平面CDE. ∵BG∥AF,∴BG⊥平面CDE. ∵BG⊂平面BCE, ∴平面BCE⊥平面CDE. (3)【解析】 在平面CDE内,过F作FH⊥CE于H,连BH. ∵平面BCE⊥平面CDE,∴FH⊥平面BCE. ∴∠FBH为BF和平面BCE所成的角. 设AD=DE=2AB=2a,则,, Rt△FHB中,. ∴直线BF和平面BCE所成角的正弦值为.
复制答案
考点分析:
相关试题推荐
P为边长为a的正三角形ABC所在平面外一点且PA=PB=PC=a,则P到平面ABC的距离为    查看答案
三棱锥manfen5.com 满分网,则二面角P-AC-B的大小为    查看答案
四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是侧棱长为manfen5.com 满分网的等腰三角形,则二面角V-AB-C的平面角为   
manfen5.com 满分网 查看答案
空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,则BC与AD的位置关系是    ;四边形EFGH是    形;当    时,四边形EFGH是菱形;当    时,四边形EFGH是矩形;当    时,四边形EFGH是正方形. 查看答案
正方体各面所在的平面将空间分成     部分. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.