满分5 > 高中数学试题 >

在一条笔直的工艺流水线上有n个工作台,将工艺流水线用如图所示的数轴表示,各工作台...

在一条笔直的工艺流水线上有n个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为x1,x2,…,xn,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(Ⅰ)若n=3,每个工作台上只有一名工人,试确定供应站的位置;
(Ⅱ)若n=5,工作台从左到右的人数依次为3,2,1,2,2,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
manfen5.com 满分网
设供应站坐标为x,各工作台上的所有工人到供应站的距离之和为d(x). 对于(1)由题意有d(x)=|x-x1|+|x-x2|+|x-x3|然后对x的范围进行讨论分析,知当x=x2时,所有工人到供应站的距离之和最短. 对于(2)由题设知,各工作台上的所有工人到供应站的距离之和为d(x)=3|x-x1|+2|x-x2|+|x-x3|+2|x-x4|+2|x-x5|.对x的取值范围进行分类讨论,判断最佳的位置. 【解析】 设供应站坐标为x,各工作台上的所有工人到供应站的距离之和为d(x). (Ⅰ)d(x)=|x-x1|+|x-x2|+|x-x3|.(2分) 当x<x1时,d(x)=x1+x2+x3-3x在区间(-∞,x1)上是减函数; 当x>x3时,d(x)=3x-(x1+x2+x3)在区间(x3,+∞)上是增函数.(4分) 所以,x必须位于区间[x1,x3]内,此时d(x)=x3-x1+|x-x2|(*), 当且仅当x=x2时,(*)式取最小值,且d(x2)=x3-x1,即供应站的位置为x=x2.(7分) (Ⅱ)由题设知,各工作台上的所有工人到供应站的距离之和为d(x) =3|x-x1|+2|x-x2|+|x-x3|+2|x-x4|+2|x-x5|.(8分) 类似于(Ⅰ)的讨论知,x1≤x≤x5,且有(11分) 所以,函数d(x)在区间(x1,x2)上是减函数,在区间(x3,x5)上是增函数,在区间[x2,x3]上是常数.故供应站位置位于区间[x2,x3]上任意一点时,均能使函数d(x)取得最小值,且最小值为x3+2x4+2x5-3x1-2x2,x2≤x≤x3.(13分)
复制答案
考点分析:
相关试题推荐
已知椭圆的中心在原点O,焦点在x轴上,点A求椭圆的方程;
(Ⅱ)若平行于CO的直线l和椭圆交于M,N两个不同点,求△CMN面积的最大值,并求此时直线l的方程.
查看答案
如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,AD>BC.E,F分别为棱AB,PC的中点.
(Ⅰ)求证:PE⊥BC;
(Ⅱ)求证:EF∥平面PAD;

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网(a∈R).
(Ⅰ)当a=1时,求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)当a=2时,在f(x)=0的条件下,求manfen5.com 满分网的值.
查看答案
有下列命题:①x=0是函数y=x3的极值点;
②三次函数f(x)=ax3+bx2+cx+d有极值点的充要条件是b2-3ac>0;
③奇函数f(x)=mx3+(m-1)x2+48(m-2)x+n在区间(-4,4)上是单调减函数.
其中假命题的序号是     查看答案
设圆C的圆心在双曲线manfen5.com 满分网(a>0)的右焦点且与此双曲线的渐近线相切,若圆C被直线l:manfen5.com 满分网截得的弦长等于2,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.