满分5 > 高中数学试题 >

数列{an}中,a1=2,an+1=an+cn(c是不为零的常数,n=1,2,3...

数列{an}中,a1=2,an+1=an+cn(c是不为零的常数,n=1,2,3,…),且a1,a2,a3成等比数列.
(1)求c的值;
(2)求{an}的通项公式;
(3)设数列manfen5.com 满分网的前n项之和为Tn,求Tn
(1)先根据a1=2,an+1=an+cn,令n=2得到a2,令n=3得到a3.因为a1,a2,a3成等比数列,所以a22=a1•a3,代入即可求出c的值;(2)当n≥2时,a2-a1=c,a3-a2=2c,…,an-an-1=(n-1)c,等号左边相加等于等号右边相加,并根据等差数列的前n项和的公式得到an即可; (3)设.然后列举出Tn的各项得①,都乘以得Tn②,利用①-②即可得到Tn的通项. 【解析】 (1)a1=2,a2=2+c,a3=2+3c. ∵a1,a2,a3成等比数列, ∴(2+c)2=2(2+3c), 解得c=0或c=2. ∵c≠0,∴c=2. (2)当n≥2时,由于a2-a1=c,a3-a2=2c,an-an-1=(n-1)c, ∴an-a1=[1+2+…+(n-1)]c=. 又a1=2,c=2,故有an=2+n(n-1)=n2-n+2(n=2,3,). 当n=1时,上式也成立. ∴an=n2-n+2(n=1,2). (3)令.Tn=b1+b2+b3+…+bn=0++2×+3×+…+(n-1)① Tn=0++2×+…+(n-2)+(n-1)② ①-②得.
复制答案
考点分析:
相关试题推荐
设集合P={b,1},Q={c,1,2},P⊆Q.用随机变量ζ表示方程x2+bx+c=0实根的个数(重根按一个计),若b,c∈{1,2,3,4,5 6,7,8,9}.
(1)求方程x2+bx+c=0有实根的概率;
(2)求ζ的分布列和数学期望.
查看答案
已知向量manfen5.com 满分网=(2cosωx,cos2ωx),manfen5.com 满分网=(sinωx,1)(其中ω>0),令f(x)=manfen5.com 满分网,且f(x)的最小正周期为π.
(1)求manfen5.com 满分网的值;
(2)写出manfen5.com 满分网上的单调递增区间.
查看答案
有3张都标着字母A,6张分别标着数字1,2,3,4,5,7的卡片,若任取其中5张卡片组成牌号,则可以组成的不同牌号的总数等于    (用数字作答) 查看答案
在下列五个函数中,①y=2x,②y=log2x,③y=x2,④y=x-1,⑤y=cos2x.当0<x1<x2<1
时,使manfen5.com 满分网恒成立的函数是    (将正确序号都填上). 查看答案
设函数manfen5.com 满分网的图象关于点P(x,0)成中心对称,若manfen5.com 满分网,则x=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.