由题意通过侧面与底面所成角为,设出正四棱锥的底面边长,求出斜高,侧棱长,求出内切球的半径与正四棱锥底面边长的关系;利用外接球的球心与正四棱锥的高在同一条直线,结合勾股定理求出,外接球的半径与底面边长的关系,即可得到比值.
【解析】
由于侧面与底面所成角为,可知底面边长与两个对面斜高构成正三角形,设底面边长为a,则斜高也为a,进而可得侧棱长为
,高为
四棱锥的内切球半径就是上述正三角形的内切圆半径为,
其外接球球心必在顶点与底面中心连线上,半径为R,球心为O,顶点为P,底面中心为O1,底面一个顶点为B,则OB=OP,
于是就有:(-R)2+()2=R2
解得R=.
所以两者的比为:.
故选D