满分5 > 高中数学试题 >

已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x...

已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是的f(x)的导函数.
(Ⅰ)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(Ⅱ)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.
(I )将g(x)=3x2-ax+3a-5<0对满足-1≤a≤1的一切a的值成立,转化为令(3-x)a+3x2-5<0,-1≤a≤1成立解决. (Ⅱ)函数y=f(x)的图象与直线y=3只有一个公共点.关键是画出函数y=f(x)的图象,方法是先f′(x)=3x2-3m2分①当m=0时,f(x)=x3-1的图象与直线y=3只有一个公共点②当m≠0时,求得极值,明确关键点,再利用图象间的关系求解. 【解析】 (Ⅰ)由题意g(x)=3x2-ax+3a-5 令φ(x)=(3-x)a+3x2-5,-1≤a≤1 对-1≤a≤1,恒有g(x)<0,即φ(a)<0 ∴即 解得 故时,对满足-1≤a≤1的一切a的值,都有g(x)<0 (Ⅱ)f′(x)=3x2-3m2 ①当m=0时,f(x)=x3-1的图象与直线y=3只有一个公共点 ②当m≠0时,f(x)极小=f(|x|)=-2m2|m|-1<-1 又∵f(x)的值域是R,且在(|m|,+∞)上单调递增 ∴当x>|m|时函数y=f(x)的图象与直线y=3只有一个公共点. 当x<|m|时,恒有f(x)≤f(-|m|) 由题意得f(-|m|)<3 即2m2|m|-1=2|m|3-1<3 解得 综上,m的取值范围是
复制答案
考点分析:
相关试题推荐
如图,已知直线l与抛物线manfen5.com 满分网相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足manfen5.com 满分网,求动点M的轨迹C的方程;
(2)若过点B的直线l'(斜率不等于零)与(1)中的轨迹C交于不同
的两点E、F(E在B、F之间),且manfen5.com 满分网,试求λ的取值范围.

manfen5.com 满分网 查看答案
已知函数f(x)=log2manfen5.com 满分网),数列{an}的前n项和为Sn,对一切正整数n,点(n,Sn)都在f(x)的反函数图象上,又bn=an-log2an,{bn}前n项和为Bn
(1)求数列{an}的通项公式;  
(2)求数列{bn}的前n项和Bn
查看答案
如图,△VAC中,VC⊥AC,将其绕直线VC旋转得到△VBC,D是AB的中点,AB=manfen5.com 满分网,AC=a,∠VDC=θ(0<θ<manfen5.com 满分网
(Ⅰ)求证:平面VAB⊥平面VCD;
(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围.

manfen5.com 满分网 查看答案
某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金120元;其余情况无奖金.
(1)员工甲抽奖一次,求其获得不同奖金的概率;
(2)员工乙幸运地先后获得三次抽奖机会,求他累计获得120奖金的概率.
查看答案
锐角三角形ABC的三内角A、B、C所对边的长分别为a、b、c,设向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)求角B的大小;
(2)若b=1,求a+c的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.