已知椭圆
+
=1(a>b>0)的左、右焦点分别是F
1(-c,0)、F
2(c,0),Q是椭圆外的动点,满足|
|=2a.点P是线段F
1Q与该椭圆的交点,点T在线段F
2Q上,并且满足
•
=0,|
|≠0.
(Ⅰ)设x为点P的横坐标,证明|
|=a+
x;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F
1MF
2的面积S=b
2.若存在,求∠F
1MF
2的正切值;若不存在,请说明理由.
考点分析:
相关试题推荐
已知椭圆
和圆O:x
2+y
2=b
2,过椭圆上一点P引圆O的两条切线,切点分别为A,B.
(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;
(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;
(2)设直线AB与x轴、y轴分别交于点M,N,求证:
为定值.
查看答案
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,
,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
查看答案
设△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足
.
(Ⅰ)求角B的大小;
(Ⅱ)若
,试求
的最小值.
查看答案
已知函数f(x)=
,无论t取何值,函数f(x)在区间(-∞,+∞)总是不单调.则a的取值范围是
.
查看答案
(填空题压轴题:考查函数的性质,字母运算等)
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2011型增函数”,则实数a的取值范围是
.
查看答案