满分5 > 高中数学试题 >

省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射...

省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=manfen5.com 满分网+2a+manfen5.com 满分网,x∈R,其中a是与气象有关的参数,且a∈],若取每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).
(1)令t=manfen5.com 满分网,x∈R,求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问:目前市中心的综合放射性污染指数是否超标?
(1)先取倒数,然后对得到的函数式的分子分母同除以x,再利用导数求出的取值范围,最后根据反比例函数的单调性求出t的范围即可; (2)f(x)=g(t)=|t-a|+2a+.下面分类讨论:当 0<a<,当 >a≥,分别求出函数g(x)的最大值M(a),然后解不等式M(a)≤2即可求出所求. 【解析】 (1)当x=0时,t=0;(2分) 当0<x≤24时,=x+.对于函数y=x+,∵y′=1-, ∴当0<x<1时,y′<0,函数y=x+单调递减, 当1<x≤24时,y′>0,函数y=x+单调递增, ∴y∈[2,+∞). 综上,t的取值范围是[0,]. (2)当a∈(0,]时,f(x)=g(t)=|t-a|+2a+= ∵g(0)=3a+,g()=a+, g(0)-g()=2a-. 故M(a)== 当且仅当a≤时,M(a)≤2, 故a∈(0,]时不超标,a∈(,]时超标.
复制答案
考点分析:
相关试题推荐
已知某种稀有矿石的价值y(单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元.
(1)写出y(单位:元)关于ω单位:克)的函数关系式;
(2)若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率;
(3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大.(注:价值损失的百分率=manfen5.com 满分网×100%;在切割过程中的重量损耗忽略不计)
查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足|manfen5.com 满分网|=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足manfen5.com 满分网manfen5.com 满分网=0,|manfen5.com 满分网|≠0.
(Ⅰ)设x为点P的横坐标,证明|manfen5.com 满分网|=a+manfen5.com 满分网x;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2.若存在,求∠F1MF2的正切值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B.
(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;
(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;
(2)设直线AB与x轴、y轴分别交于点M,N,求证:manfen5.com 满分网为定值.

manfen5.com 满分网 查看答案
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,manfen5.com 满分网,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?

manfen5.com 满分网 查看答案
设△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足manfen5.com 满分网
(Ⅰ)求角B的大小;
(Ⅱ)若manfen5.com 满分网,试求manfen5.com 满分网的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.