满分5 > 高中数学试题 >

已知无穷数列{an}中,a1,a2,…,am是首项为10,公差为-2的等差数列;...

已知无穷数列{an}中,a1,a2,…,am是首项为10,公差为-2的等差数列;am+1,am+2,…a2m是首项为manfen5.com 满分网,公比为manfen5.com 满分网的等比数列(m≥3,m∈N*),并对任意n∈N*,均有an+2m=an成立.
(1)当m=12时,求a2010
(2)若manfen5.com 满分网,试求m的值;
(3)判断是否存在m,使S128m+3≥2010成立,若存在,求出m的值;若不存在,请说明理由.
(1)由an+24=an,知a2010=a18,a18是以为首项,以为公比的等比数列的第6项,所以. (2)由,知m≥7,由,知2km+m+7=(2k+1)m+7=52,由此入手可求出m可取9、15、45. (3)由,知,.设f(m)=704m-64m2,>1922;f(m)=-64(m2-11m),f(x)max=f(5)=f(6)=1920,所以不存在这样的m. (1)an+24=an;所以a2010=a18(2分) a18是以为首项,以为公比的等比数列的第6项, 所以(4分) (2),所以m≥7(5分) 因为,所以2km+m+7=(2k+1)m+7=52,其中m≥7,m∈N,k∈N(6分) (2k+1)m=45, 当k=0时,m=45,成立. 当k=1时,m=15,成立; 当k=2时,m=9成立(9分) 当k≥3时,; 所以m可取9、15、45(10分) (3)(12分) 设f(m)=704m-64m2,(14分) g(m)>1922; f(m)=-64(m2-11m),对称轴, 所以f(m)在m=5或6时取最大f(x)max=f(5)=f(6)=1920, 因为1922>1920,所以不存在这样的m(16分)
复制答案
考点分析:
相关试题推荐
省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=manfen5.com 满分网+2a+manfen5.com 满分网,x∈R,其中a是与气象有关的参数,且a∈],若取每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).
(1)令t=manfen5.com 满分网,x∈R,求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问:目前市中心的综合放射性污染指数是否超标?
查看答案
已知某种稀有矿石的价值y(单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元.
(1)写出y(单位:元)关于ω单位:克)的函数关系式;
(2)若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率;
(3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大.(注:价值损失的百分率=manfen5.com 满分网×100%;在切割过程中的重量损耗忽略不计)
查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足|manfen5.com 满分网|=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足manfen5.com 满分网manfen5.com 满分网=0,|manfen5.com 满分网|≠0.
(Ⅰ)设x为点P的横坐标,证明|manfen5.com 满分网|=a+manfen5.com 满分网x;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2.若存在,求∠F1MF2的正切值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B.
(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;
(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;
(2)设直线AB与x轴、y轴分别交于点M,N,求证:manfen5.com 满分网为定值.

manfen5.com 满分网 查看答案
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,manfen5.com 满分网,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.