满分5 > 高中数学试题 >

已知函数(a>0,a≠1), (1)若a>1,且关于x的方程f(x)=m有两个不...

已知函数manfen5.com 满分网(a>0,a≠1),
(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
(2)设函数g(x)=f(-x),x∈[-2,+∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.
(1)令ax=t,将“方程f(x)=m有两个不同的正数解”转化为:“关于t的方程有相异的且均大于1的两根”,即关于t的方程t2-mt+2=0有相异的且均大于1的两根,求解. (2)根据题意有g(x)=a|x|+2ax,x∈[-2,+∞),根据指数函数,分①当a>1时,②当0<a<1时,两种情况分析,每种情况下,根据绝对值,再按照x≥0时和-2≤x<0两种情况讨论.最后综合取并集. 【解析】 (1)令ax=t,x>0, ∵a>1,所以t>1, ∴关于x的方程f(x)=m有两个不同的正数解 转化为:方程有相异的且均大于1的两根, ∴ 解得, 故实数m的取值范围是. (2)g(x)=a|x|+2ax,x∈[-2,+∞) ①当a>1时, x≥0时,ax≥1,g(x)=3ax,所以g(x)∈[3,+∞), -2≤x<0时,,g(x)=a-x+2ax,所以 ⅰ当即时,对∀x∈(-2,0),g′(x)>0,所以g(x)在[-2,0)上递增, 所以, 综上:g(x)有最小值为与a有关,不符合(10分) ⅱ当即时,由g′(x)=0得, 且当时,g′(x)<0, 当时,g′(x)>0, 所以g(x)在上递减,在上递增, 所以=, 综上:g(x)有最小值为与a无关,符合要求. ②当0<a<1时, a)x≥0时,0<ax≤1,g(x)=3ax,所以g(x)∈(0,3] b)-2≤x<0时,,g(x)=a-x+2ax, 所以<0,g(x)在[-2,0)上递减, 所以, 综上:a)b)g(x)有最大值为与a有关,不符合 综上所述,实数a的取值范围是.
复制答案
考点分析:
相关试题推荐
已知数列{an}的通项公式是an=2n-1,数列{bn}是等差数列,令集合A={a1,a2,…,an,…},B={b1,b2,…,bn,…},n∈N*.将集合A∪B中的元素按从小到大的顺序排列构成的数列记为{cn}.(1)若cn=n,n∈N*,求数列{bn}的通项公式;(2)若A∩B=∅,数列{cn}的前5项成等比数列,且c1=1,c9=8,求manfen5.com 满分网的正整数n的个数.
查看答案
已知无穷数列{an}中,a1,a2,…,am是首项为10,公差为-2的等差数列;am+1,am+2,…a2m是首项为manfen5.com 满分网,公比为manfen5.com 满分网的等比数列(m≥3,m∈N*),并对任意n∈N*,均有an+2m=an成立.
(1)当m=12时,求a2010
(2)若manfen5.com 满分网,试求m的值;
(3)判断是否存在m,使S128m+3≥2010成立,若存在,求出m的值;若不存在,请说明理由.
查看答案
省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=manfen5.com 满分网+2a+manfen5.com 满分网,x∈R,其中a是与气象有关的参数,且a∈],若取每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).
(1)令t=manfen5.com 满分网,x∈R,求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问:目前市中心的综合放射性污染指数是否超标?
查看答案
已知某种稀有矿石的价值y(单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元.
(1)写出y(单位:元)关于ω单位:克)的函数关系式;
(2)若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率;
(3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大.(注:价值损失的百分率=manfen5.com 满分网×100%;在切割过程中的重量损耗忽略不计)
查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足|manfen5.com 满分网|=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足manfen5.com 满分网manfen5.com 满分网=0,|manfen5.com 满分网|≠0.
(Ⅰ)设x为点P的横坐标,证明|manfen5.com 满分网|=a+manfen5.com 满分网x;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2.若存在,求∠F1MF2的正切值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.