满分5 > 高中数学试题 >

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底...

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=manfen5.com 满分网,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离.

manfen5.com 满分网
方法一:(1)取OB中点E,连接ME,NE,证明平面MNE∥平面OCD,方法是两个平面内相交直线互相平行得到,从而的到MN∥平面OCD; (2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP ∵OA⊥平面ABCD,∴CD⊥MP菱形的对角相等得到∠ABC=∠ADC=, 利用菱形边长等于1得到DP=,而MD利用勾股定理求得等于,在直角三角形中,利用三角函数定义求出即可. (3)AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q, ∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD, 又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,求出距离可得. 方法二:(1)分别以AB,AP,AO所在直线为x,y,z轴建立坐标系,分别表示出A,B,O,M,N的坐标, 求出,,的坐标表示.设平面OCD的法向量为=(x,y,z),则, 解得,∴MN∥平面OCD (2)设AB与MD所成的角为θ,表示出和,利用a•b=|a||b|cosα求出叫即可. (3)设点B到平面OCD的距离为d,则d为在向量上的投影的绝对值,由, 得.所以点B到平面OCD的距离为. 【解析】 方法一(综合法) (1)取OB中点E,连接ME,NE ∵ME∥AB,AB∥CD,∴ME∥CD 又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD (2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角) 作AP⊥CD于P,连接MP ∵OA⊥平面ABCD,∴CD⊥MP ∵,∴,, ∴ 所以AB与MD所成角的大小为. (3)∵AB∥平面OCD, ∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q, ∵AP⊥CD,OA⊥CD, ∴CD⊥平面OAP,∴AQ⊥CD. 又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离, ∵,, ∴,所以点B到平面OCD的距离为. 方法二(向量法) 作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系: A(0,0,0),B(1,0,0),,, O(0,0,2),M(0,0,1), (1),, 设平面OCD的法向量为n=(x,y,z),则•=0,•=0 即 取,解得 ∵•=(,,-1)•(0,4,)=0, ∴MN∥平面OCD. (2)设AB与MD所成的角为θ, ∵ ∴, ∴,AB与MD所成角的大小为. (3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值, 由,得d== 所以点B到平面OCD的距离为.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网,设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为manfen5.com 满分网,求a的值.
查看答案
(几何证明选讲选做题)已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD的长为    查看答案
(坐标系与参数方程选做题)以原点为极点,x轴的正半轴为极轴,单位长度一致的坐标系下,已知曲线C1的参数方程为manfen5.com 满分网(θ为参数),曲线C2的极坐标方程为ρsinθ=a,则这两曲线相切时实数a的值为    查看答案
在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则manfen5.com 满分网,由此类比:三棱锥S-ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC上的高为h,则    查看答案
符号[x]表示不超过x的最大整数,如[π]=3,[-1.08]=-2,定义函数{x}=x-[x].给出下四个命题:
①函数{x}的定义域是R,值域为[0,1]
②方程manfen5.com 满分网有无数个解;
③函数{x}是周期函数;
④函数{x}是增函数.其中正确命题的序号有:    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.