(Ⅰ)由题意Sn=2n,由项与前n项和的关系an=得{an}的通项公式;
(Ⅱ)由bn+1=bn+(2n-1)得bn+1-bn=2n-1,令n=1、2、3、…n-1得n-1个式子,以上各式相加得bn-b1=1+3+5+…+(2n-3),可求bn=n2-2n,进而求cn,由错位相减法得数列{cn}的通项及其前n项和Tn.
【解析】
(Ⅰ)由题意Sn=2n,Sn-1=2n-1(n≥2),
两式相减得an=2n-2n-1=2n-1(n≥2).
当n=1时,a1=S1=2,
∴an=.
(Ⅱ)∵bn+1=bn+(2n-1),
∴bn-bn-1=2n-3
bn-1-bn-2=2n-5
…
b4-b3=5
b3-b2=3
b2-b1=1,
以上各式相加得bn-b1=1+3+5+…+(2n-3)
==(n-1)2
∵b1=-1,∴bn=n2-2n.
∴.
∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,
∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.
∴-Tn=2+22+23+…+2n-1-(n-2)×2n
=
=2n-2-(n-2)×2n=-2-(n-3)×2n.
∴Tn=2+(n-3)×2n.