满分5 > 高中数学试题 >

已知函数f(x)=(x2-3x+3)•ex定义域为[-2,t](t>-2),设f...

已知函数f(x)=(x2-3x+3)•ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(Ⅰ)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(Ⅱ)求证:n>m;
(Ⅲ)求证:对于任意的t>-2,总存x∈(-2,t),满足manfen5.com 满分网,并确定这样的x的个数.
(Ⅰ)首先求出函数的导数,然后根据导数与函数单调区间的关系确定t的取值范围, (Ⅱ)运用函数的极小值进行证明, (Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定. (Ⅰ)【解析】 因为f′(x)=(2x-3)ex+(x2-3x+3)ex, 由f′(x)>0⇒x>1或x<0, 由f′(x)<0⇒0<x<1, ∴函数f(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减, ∵函数f(x)在[-2,t]上为单调函数, ∴-2<t≤0, (Ⅱ)证:因为函数f(x)在(-∞,0)∪(1,+∞)上单调递增,在(0,1)上单调递减, 所以f(x)在x=1处取得极小值e, 又f(-2)=13e-2<e, 所以f(x)在[2,+∞)上的最小值为f(-2), 从而当t>-2时,f(-2)<f(t), 即m<n, (Ⅲ)证:因为, ∴, 即为x2-x=, 令g(x)=x2-x-, 从而问题转化为证明方程g(x)==0在(-2,t)上有解并讨论解的个数, 因为g(-2)=6-(t-1)2=-, g(t)=t(t-1)-=, 所以当t>4或-2<t<1时,g(-2)•g(t)<0, 所以g(x)=0在(-2,t)上有解,且只有一解, 当1<t<4时,g(-2)>0且g(t)>0, 但由于g(0)=-<0, 所以g(x)=0在(-2,t)上有解,且有两解, 当t=1时,g(x)=x2-x=0, 解得x=0或1, 所以g(x)=0在(-2,t)上有且只有一解, 当t=4时,g(x)=x2-x-6=0, 所以g(x)=0在(-2,t)上也有且只有一解, 综上所述,对于任意的t>-2,总存在x∈(-2,t),满足, 且当t≥4或-2<t≤1时,有唯一的x适合题意, 当1<t<4时,有两个x适合题意.
复制答案
考点分析:
相关试题推荐
已知双曲线manfen5.com 满分网的两个焦点分别为F1(-c,0),F2(c,0)(c>0).且manfen5.com 满分网.又双曲线C上的任意一点E满足manfen5.com 满分网
(1)求双曲线C的方程;
(2)若双曲线C上的点P满足manfen5.com 满分网的值;
(3)若直线y=kx+m(k≠0,m≠0)与双曲线C交于不同两点M、N,且线段MN的垂直平分线过点A(0,-1),求实数m的取值范围.
查看答案
manfen5.com 满分网如图,在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知manfen5.com 满分网
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(Ⅲ)在(Ⅱ)的条件下,AB=manfen5.com 满分网,求二面角A-EB1-A1的平面角的正切值.
查看答案
2007年广东省实行高中等级考试,高中等级考试成绩分A,B,C,D四个等级,其中等级D为不合格,09年我校高二学生盛兴参加物理、化学、历史三科,三科合格的概率均为manfen5.com 满分网,每科得A,B,C,D 四个等级的概率分别为manfen5.com 满分网
(Ⅰ)求x,y的值;
(Ⅱ)若有一科不合格,则不能拿到高中毕业证,求学生盛兴不能拿到高中毕业证的概率;
(Ⅲ)若至少有两科得A,一科得B,就能被评为三星级学生,则学生甲被评为三星级学生的概率;
(Ⅳ)设ξ为学生盛兴考试不合格科目数,求ξ的分布列及ξ的数学期望Eξ.
查看答案
若数列{an}的前n项和Sn是(1+x)n二项展开式中各项系数的和(n=1,2,3,…).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=manfen5.com 满分网,求数列{cn}的通项及其前n项和Tn
查看答案
ABC的面积S满足manfen5.com 满分网≤S≤3,且manfen5.com 满分网manfen5.com 满分网=6,AB与BC的夹角为θ.
(1)求θ的取值范围.
(2)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.