如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为V
F-ABCD,V
F-CBE,求V
F-ABCD:V
F-CBE.
考点分析:
相关试题推荐
先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,
(1)求点P(x,y)在直线y=x-1上的概率;
(2)求点P(x,y)满足y
2<4x的概率.
查看答案
已知函数f(x)=2cosxcos(
-x)-
sin
2x+sinxcosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设
,求f(x)的值域.
查看答案
如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=2
,若∠CAP=30°,则⊙O的直径AB=
.
查看答案
在极坐标系中,过点
作圆ρ=4sinθ的切线,则切线的极坐标方程是
.
查看答案
在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径
.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=
.
查看答案