满分5 > 高中数学试题 >

已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂...

已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1,|DB|=l2,求manfen5.com 满分网的最大值.
(1)先设出点P的坐标,代入整理即可得到动点P的轨迹C的方程; (2)先利用条件设出圆的方程,并求出A、B两点的坐标以及|DA|=l1,|DB|=l2的表达式,代入整理后利用基本不等式求最大值即可. (1)【解析】 设P(x,y),则Q(x,-1), ∵, ∴(0,y+1)•(-x,2)=(x,y-1)•(x,-2). 即2(y+1)=x2-2(y-1),即x2=4y, 所以动点P的轨迹C的方程x2=4y. (2)【解析】 设圆M的圆心坐标为M(a,b),则a2=4b.① 圆M的半径为. 圆M的方程为(x-a)2+(y-b)2=a2+(b-2)2. 令y=0,则(x-a)2+b2=a2+(b-2)2, 整理得,x2-2ax+4b-4=0.② 由①、②解得,x=a±2. 不妨设A(a-2,0),B(a+2,0), ∴,. ∴=,③ 当a≠0时,由③得,. 当且仅当时,等号成立. 当a=0时,由③得,. 故当时,的最大值为.
复制答案
考点分析:
相关试题推荐
如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=3,AB=6.
(1)求证:AB⊥平面ADE;
(2)求凸多面体ABCDE的体积.

manfen5.com 满分网 查看答案
高考数学考试中有12道选择题,每道选择题有4个选项,其中有且仅有一个是正确的.评分标准规定:“在每小题中给出的四个选项中,只有一项是符合题目要求的,答对得5分,不答或答错得0分”.某考生每道选择题都选出一个答案,能确定其中有道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题能判断出一个选项是错误的,还有一道题因不理解题意只能乱猜.试求出该考生的选择题:
(Ⅰ)得60分的概率;
(Ⅱ)得多少分的概率最大?
查看答案
已知向量manfen5.com 满分网=(sina,cosa),manfen5.com 满分网=(6sina+cosa,7sina-2cosa),设函数f(a)=manfen5.com 满分网manfen5.com 满分网
(1)求函数f(a)的最大值;
(2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,f(A)=6,且△ABC的面积为3,b+c=2+3manfen5.com 满分网,求a的值.
查看答案
可以证明:“正三角形内任意一点到三边的距离之和是一个定值”,我们将空间与平面进行类比,可得结论:    查看答案
如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是    (填出所有可能的序号).manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.