定义在(0,+∞)上的三个函数f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x
2-af(x),h(x)=x-a
,且g(x)在x=1处取得极值.
(1)求a的值及h(x)的单调区间;
(2)求证:当1<x<e
2时,恒有x<
;
(3)把h(x)对应的曲线C
1向上平移6个单位后得到曲线C
2,求C
2与g(x)对应曲线C
3的交点的个数,并说明道理.
考点分析:
相关试题推荐
已知抛物线x
2=4y的焦点为F,过焦点F且不平行于x轴的动直线l交抛物线于A,B两点,抛物线在A、B两点处的切线交于点M.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)设直线MF交该抛物线于C,D两点,求四边形ACBD面积的最小值.
查看答案
如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;
(2)求平面EBD与平面ABC所成的锐二面角θ的余弦值.
查看答案
已知数列{a
n}的前n项和为S
n,a
1=1,a
n+1=2S
n+1(n∈N
*),等差数列{b
n}中b
n>0(n∈N*),且b
1+b
2+b
3=15,又a
1+b
1、a
2+b
2、a
3+b
3成等比数列.
(Ⅰ)求数列{a
n}、{b
n}的通项公式;
(Ⅱ)求数列{a
n•b
n}的前n项和T
n.
查看答案
中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.济南市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图,为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).
(1)求此次拦查中醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人
中含有醉酒驾车人数x的分布列和期望.
查看答案
已知锐角△ABC中的内角A、B、C的对边分别为a,b,c,定义向量
.
(1)求函数f(x)=sin2xcosB-cos2xsinB的单调递增区间;
(2)如果b=2,求△ABC的面积的最大值.
查看答案