根据题意先可求的a1,进而根据题设中的数列递推式求得++…+=(n-1)2+3(n-1)与已知式相减即可求得数列{an}的通项公式,进而求得数列{}的通项公式,可知是等差数列,进而根据等差数列的求和公式求得答案.
【解析】
令n=1,得=4,∴a1=16.
当n≥2时,
++…+=(n-1)2+3(n-1).
与已知式相减,得
=(n2+3n)-(n-1)2-3(n-1)=2n+2,
∴an=4(n+1)2,n=1时,a1适合an.
∴an=4(n+1)2,
∴=4n+4,
∴+++==2n2+6n.
故答案为2n2+6n