已知抛物线C:y
2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.
考点分析:
相关试题推荐
设函数
,g(x)=2x
2+4x+c.
(1)试问函数f(x)能否在x=-1时取得极值?说明理由;
(2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.
查看答案
如图,在矩形ABC中,AB=4,AD=,E为AB的中点,现将△ADE沿直线DE翻折成△A′DE,使A′在平面BCDE的射影在DE上,F为线段A′D的中点.
(Ⅰ)求证:EF∥平面A′BC;
(Ⅱ)求直线A'C与平面A′DE所成角的正切值.
查看答案
已知等差数列{a
n}满足a
2+a
3=10,前6项的和为42.
(1)求数列{a
n}的通项公式;
(2)设数列{b
n}的前x
2-2x
x+x
2=0项和△=0,且
,若S
n<m恒成立,求m的最小值.
查看答案
已知向量
,
,函数f(x)=
.
(1)求函数f(x)的单调递增区间.
(2)在△ABC中,a,b,c分别是角A、B、C的对边,a=1且f(A)=3,求△ABC面积S的最大值.
查看答案
定义在R上的偶函数y=f(x)满足:
①对任意x∈R都有f(x+2)=f(x)+f(1)成立;
②f(0)=-1;
③当x∈(-1,0)时,都有f
′(x)<0.
若方程f(x)=0在区间[a,3]上恰有3个不同实根,则实数a的取值范围是
.
查看答案