满分5 > 高中数学试题 >

已知函数f(x)=x2+lnx-ax. (1)若f(x)在(0,1)上是增函数,...

已知函数f(x)=x2+lnx-ax.
(1)若f(x)在(0,1)上是增函数,求a得取值范围;
(2)在(1)的结论下,设g(x)=e2x+|ex-a|,x∈[0,ln3],求函数g(x)的最小值.
(1)本题知道了函数在(0,1)上是增函数,求a范围,可以转化为f'(x)>0在(0,1)上恒成立,由此求解参数范围即可; (2)本题先用换元法将复合函数变成关于变量的分段二次函数,然后在两段时分别研究,求出每一段上的最小值,再取两者中的较小者即可. 【解析】 (1)f'(x)=2x+-a,(1分) ∵f(x)在(0,1)上是增函数, ∴2x+-a>0在(0,1)上恒成立,即a<2x+恒成立. ∵2x+≥(当且仅当x=时取等号),所以a<.(4分) 当a=时,易知f(x)在(0,1)上也是增函数,所以a≤.(5分) (2)设t=ex,则h(t)=t2+|t-a|, ∵x∈[0,ln3],∴t∈[1,3].(7分) 当a≤1时,h(t)=t2+t-a,在区间[1,3]上是增函数,所以h(t)的最小值为h(1)=2-a.(9分) 当1<a≤时,h(t)=. 因为函数h(t)在区间[a,3]上是增函数,在区间[1,a]上也是增函数,所以h(t)在[1,3]上为增函数, 所以h(t)的最小值为h(1)=a.(14分) 所以,当a≤1时,g(x)的最小值为2-a;当1<a≤时,g(x)的最小值为a.(15分)
复制答案
考点分析:
相关试题推荐
设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:manfen5.com 满分网
查看答案
如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠ABC=60°,点M是棱PC的中点,N是棱PB的中点,PA⊥平面ABCD,AC、BD交于点O.
(1)求证:平面OMN∥平面PAD;
(2)若DM与平面PAC所成角的正切值为2,求PA长.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边为a,b,c,manfen5.com 满分网,求b的值.
查看答案
已知函数manfen5.com 满分网,若方程af2(x)+bf(x)+c=0有4个根,则log2(x1+x2+x3+x4)=    查看答案
关于x的方程x2+2ax+b2=0中的a是从0,1,2,3四个数中任取一个数,b是从0,1,2三个数中任取一个数,记事件“方程x2+2ax+b2=0有实根”为事件A,则p(A)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.