(1)若证明EF∥平面PAD,关键是要找到平面PAD内一条可能与EF平行的直线,分别图形后发现PA即为所求,故连接AC后,利用中位线的性质,即可临到结论.
(2)若证明EF⊥平面PDC,我们要证明EF与平面PDC中两条相交直线均垂直,已知中底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,结合(1)中结论,易证明出:CD⊥PA且PA⊥PD,根据线面垂直的判定定理即可得到结论.
证明:(1)连接AC,在△CPA中,因为E,F分别为PC,BD的中点,
所以EF∥PA.而PA⊂平面PAD,EF⊄平面PAD,
所以直线EF∥平面PAD.
(2)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,且CD⊥AD,
所以CD⊥PA.又因为PA⊥PD,且CD,PD⊂平面PDC,
所以PA⊥平面PDC.而EF∥PA,所以EF⊥平面PDC.