f(x)=|x-a|-lnx(a>0).
(1)若a=1,求f(x)的单调区间及f(x)的最小值;
(2)若a>0,求f(x)的单调区间;
(3)试比较
+
+…+
与
的大小.(n∈N
*且n≥2),并证明你的结论.
考点分析:
相关试题推荐
公差d≠0的等差数列{a
n}的前n项和为S
n,已知
,
.
(Ⅰ)求数列{a
n}的通项公式a
n及其前n项和S
n;
(Ⅱ)记
,若自然数η
1,η
2,…,η
k,…满足1≤η
1<η
2<…<η
k<…,并且
成等比数列,其中η
1=1,η
2=3,求η
k(用k表示);
(Ⅲ)记
,试问:在数列{c
n}中是否存在三项c
r,c
s,c
t(r<s<t,r,s,t∈N
*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.
查看答案
已知函数f(x)=x
3-ax
2-a
2x+1,g(x)=1-4x-ax
2,其中实数a≠0.
(1)求函数f(x)的单调区间;
(2)若f(x)与g(x)在区间(-a,-a+2)内均为增函数,求a的取值范围.
查看答案
已知函数f(x)=
+
+
.
(1)求y=f(x)在[-4,-
]上的最值;
(2)若a≥0,求g(x)=
+
+
的极值点.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,E,F分别为PC,BD的中点.证明
(1)EF∥平面PAD;
(2)EF⊥平面PDC.
查看答案
在△ABC中,已知角A,B所对的边分别为a,b,且a=25,b=39,
.
(Ⅰ)求sinB的值;
(Ⅱ)求
的值.
查看答案