满分5 > 高中数学试题 >

记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10. (1)求数...

记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10.
(1)求数列{an}的通项公式;
(2)令bn=an•2n(n∈N*),求数列{bn}的前n项和Tn
(1):利用待定系数法,设首项和公差,由a2+a4=6,S4=10,列方程组,可得数列首项和公差,从而得解. (2):由an=n,bn=an•2n=n•2n可知,要求{bn}的前n项和,可利用错位相减的方法求得.(一个等差数列和一个等比数列对应项之积组成的数列,可用错位相减法求和) 【解析】 (Ⅰ)设等差数列{an}的公差为d,由a2+a4=6,S4=10, 可得,(2分), 即, 解得,(4分) ∴an=a1+(n-1)d=1+(n-1)=n, 故所求等差数列{an}的通项公式为an=n.(5分) (Ⅱ)依题意,bn=an•2n=n•2n, ∴Tn=b1+b2++bn=1×2+2×22+3×23++(n-1)•2n-1+n•2n,(7分) 又2Tn=1×22+2×23+3×24+…+(n-1)•2n+n•2n+1,(9分) 两式相减得-Tn=(2+22+23++2n-1+2n)-n•2n+1(11分)==(1-n)•2n+1-2,(12分) ∴Tn=(n-1)•2n+1+2.(13分)
复制答案
考点分析:
相关试题推荐
给定集合An={1,2,3,…,n},n∈N*.若f是An→An的映射,且满足:
(1)任取i,j∈An,若i≠j,则f(i)≠f(j);
(2)任取m∈An,若m≥2,则有m∈{f(1),f(2),…,f(m)}.
则称映射f为An→An的一个“优映射”.
例如:用表1表示的映射f:A3→A3是一个“优映射”.
表1
i123
f(i)231
表2
i1234
f(i)3
(1)已知f:A4→A4是一个“优映射”,请把表2补充完整(只需填出一个满足条件的映射);
(2)若f:A2010→A2010是“优映射”,且f(1004)=1,则f(1000)+f(1007)的最大值为    查看答案
在△ABC中,角A,B,C所对应的边分别为a,b,c,若a=csinA,则manfen5.com 满分网的最大值为    查看答案
已知数列{an}满足a1=1,anan+1=2n(n∈N*),则a9+a10的值为    查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,若manfen5.com 满分网⊥x轴,则manfen5.com 满分网=    查看答案
某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如右图).s1,s2分别表示甲、乙两班各自5名学生学分的标准差,则s1    s2.(填“>”、“<”或“=”)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.