满分5 > 高中数学试题 >

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原...

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若manfen5.com 满分网,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.
(Ⅰ)抛物线C2有公共焦点F(1,0),可知该抛物线的标准方程的形式和P的值,代入即可; (Ⅱ)设出直线l的方程为y=k(x-4),联立方程,消去x,得到关于y的一元二次方程,设A(x1,y1),B(x2,y2),利用韦达定理和△>0及,消去y1,y2,可求得斜率k的值; (Ⅲ)设P(m,n),则OP中点为,因为O、P两点关于直线y=k(x-4)对称,利用对称的性质(垂直求平方),可求得斜率k的值,联立直线与椭圆方程,消去y,得到关于x的一元二次方程,△≥0,解不等式即可椭圆C1的长轴长的最小值. 【解析】 (Ⅰ)∵抛物线C2的焦点F(1,0), ∴=1,即p=2 ∴抛物线C2的方程为:y2=4x, (Ⅱ)设直线AB的方程为:y=k(x-4),(k存在且k≠0). 联立,消去x,得ky2-4y-16k=0, 显然△=16+64k2>0,设A(x1,y1),B(x2,y2), 则    ①y1•y2=-16          ② 又,所以         ③ 由①②③消去y1,y2,得k2=2, 故直线l的方程为,或. (Ⅲ)设P(m,n),则OP中点为,因为O、P两点关于直线y=k(x-4)对称, 所以,即,解之得, 将其代入抛物线方程,得:,所以,k2=1. 联立,消去y,得:(b2+a2k2)x2-8k2a2x+16a2k2-a2b2=0. 由△=(-8k2a2)2-4(b2+a2k2)(16a2k2-a2b2)≥0, 得16a2k4-(b2+a2k2)(16k2-b2)≥0, 即a2k2+b2≥16k2, 将k2=1,b2=a2-1代入上式并化简,得2a2≥17,所以,即, 因此,椭圆C1长轴长的最小值为.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(2ax-x2)eax,其中a为常数,且a≥0.
(Ⅰ)若a=1,求函数f(x)的极值点;
(Ⅱ)若函数f(x)在区间manfen5.com 满分网上单调递减,求实数a的取值范围.
查看答案
为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.
(1)求4人恰好选择了同一家公园的概率;
(2)设选择甲公园的志愿者的人数为X,试求X的分布列及期望.
查看答案
 已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M,N为侧棱PC上的两个三等分点,如图所示.
(1)求证:AN∥平面MBD;
(2)求异面直线AN与PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.

manfen5.com 满分网 查看答案
记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10.
(1)求数列{an}的通项公式;
(2)令bn=an•2n(n∈N*),求数列{bn}的前n项和Tn
查看答案
给定集合An={1,2,3,…,n},n∈N*.若f是An→An的映射,且满足:
(1)任取i,j∈An,若i≠j,则f(i)≠f(j);
(2)任取m∈An,若m≥2,则有m∈{f(1),f(2),…,f(m)}.
则称映射f为An→An的一个“优映射”.
例如:用表1表示的映射f:A3→A3是一个“优映射”.
表1
i123
f(i)231
表2
i1234
f(i)3
(1)已知f:A4→A4是一个“优映射”,请把表2补充完整(只需填出一个满足条件的映射);
(2)若f:A2010→A2010是“优映射”,且f(1004)=1,则f(1000)+f(1007)的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.