已知函数f(x)的图象在[a,b]上连续不断,定义:f
1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f
2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f
2(x)-f
1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f
1(x),f
2(x)的表达式;
(2)已知函数f(x)=x
2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x
3+3x
2是[0,b]上的2阶收缩函数,求b的取值范围.
考点分析:
相关试题推荐
已知椭圆C
1和抛物线C
2有公共焦点F(1,0),C
1的中心和C
2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C
2分别相交于A,B两点.
(Ⅰ)写出抛物线C
2的标准方程;
(Ⅱ)若
,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C
2上,直线l与椭圆C
1有公共点,求椭圆C
1的长轴长的最小值.
查看答案
已知函数f(x)=(2ax-x
2)e
ax,其中a为常数,且a≥0.
(Ⅰ)若a=1,求函数f(x)的极值点;
(Ⅱ)若函数f(x)在区间
上单调递减,求实数a的取值范围.
查看答案
为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.
(1)求4人恰好选择了同一家公园的概率;
(2)设选择甲公园的志愿者的人数为X,试求X的分布列及期望.
查看答案
已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M,N为侧棱PC上的两个三等分点,如图所示.
(1)求证:AN∥平面MBD;
(2)求异面直线AN与PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.
查看答案
记等差数列{a
n}的前n项和为S
n,已知a
2+a
4=6,S
4=10.
(1)求数列{a
n}的通项公式;
(2)令b
n=a
n•2
n(n∈N
*),求数列{b
n}的前n项和T
n.
查看答案