满分5 > 高中数学试题 >

如图是2008年元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶...

manfen5.com 满分网如图是2008年元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和样本方差分别为( )
A.84,2
B.84,3
C.85,2
D.85,3
根据算分的规则,去掉一个最高分和一个最低分有83,84,85,86,87五个数据,把五个数据代入求平均数的公式,得到这组数据的平均数,再代入方差的公式,得到方差. 【解析】 ∵由题意知,选手的分数去掉一个最高分和一个最低分有83,84,85,86,87, ∴选手的平均分是 =85, 选手的得分方差是 (4+1+0+1+4)=2, 故选C.
复制答案
考点分析:
相关试题推荐
下列命题中是假命题的是( )
A.manfen5.com 满分网,x>sin
B.∃x∈R,sinx+cosx=2
C.∀x∈R,3x>0
D.∃x∈R,lgx=0
查看答案
若集合A={x||x-2|≤3,x∈R},B={y|y=1-x2,y∈R},则A∩B=( )
A.[0,1]
B.[0,+∞)
C.[-1,1]
D.∅
查看答案
复数manfen5.com 满分网=( )
A.1-i
B.1+i
C.-i
D.i
查看答案
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.
查看答案
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若manfen5.com 满分网,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.