满分5 > 高中数学试题 >

对于定义在R上的函数f(x),可以证明点A(m,n)是f(x)图象的一个对称点的...

对于定义在R上的函数f(x),可以证明点A(m,n)是f(x)图象的一个对称点的充要条件是f(m-x)+f(m+x)=2n,x∈R.
(1)求函数f(x)=x3+3x2图象的一个对称点;
(2)函数f(x)=ax3+(b-2)x2(a,b∈R)在R上是奇函数,求a,b满足的条件;并讨论在区间[-1,1]上是否存在常数a,使得f(x)≥-x2+4x-2恒成立?
(3)试写出函数y=f(x)的图象关于直线X=M对称的充要条件(不用证明);利用所学知识,研究函数f(x)=ax3+bx2(a,b∈R)图象的对称性.
(1)因为点A(m,n)是f(x)图象的一个对称点的充要条件是f(m-x)+f(m+x)=2n,x∈R.可设A(m,n)为f(x)的一个对称点则得到f(m-x)+f(m+x)=2n成立即可解出m和n; (2)根据函数是奇函数可知f(-x)+f(x)=0得a、b的值;把ab代入的f(x)的解析式让f(x)≥-x2+4x-2推出矛盾即可说明不存在; (3)函数y=f(x)的图象关于直线X=M对称的充要条件是f(m+x)=f(m-x);分析函数f(x)=ax3+bx2(a,b∈R)图象的对称性.f(m+x)+f(m-x)=2m可求出对称点的坐标. 【解析】 (1)【解析】 设A(m,n)为函数f(x)=x3+3x2图象的一个对称点,则f(m-x)+f(m+x)=2n,对于x∈R恒成立.即(m-x)3+3(m-x)2+(m+x)3+3(m+x)2=2n对于x∈R恒成立, ∴(6m+6)x2+(2m3+6m2-2n)=0由解得: 故函数f(x)图象的一个对称点为(-1,2). (2)①因为函数是奇函数,则由f(-x)=-f(x)得:-ax3+(b-2)x2=-ax3-(b-2)x2,解得a∈R,b=2; ②当a∈R,b=2时f(x)是奇函数.不存在常数a使f(x)≥-x2+4x-2x∈[-1,1]时恒成立. 依题,此时f(x)=ax3令g(x)=-x2+4x-2x∈[-1,1]∴g(x)∈[-7,1]若a=0,f(x)=0,不合题; 若a>0,f(x)=ax3此时为单调增函数,f(x)min=-a. 若存在a合题,则-a≥1,与a>0矛盾. 若a<0,f(x)=ax3此时为单调减函数, f(x)min=a若存在a合题,则a≥1,与a<0矛盾. 综上可知,符合条件的a不存在. (3)函数的图象关于直线x=m对称的充要条件是f(m+x)=f(m-x) ①a=b=0时,f(x)=0(x∈R),其图象关于x轴上任意一点成中心对称;关于平行于y轴的任意一条直线成轴对称图形; ②a=0,b≠0时,f(x)=bx2(x∈R),其图象关于y轴对称图形; ③a≠0,b=0时,f(x)=ax3,其图象关于原点中心对称; ④a≠0,b≠0时,f(x)=ax3+bx2的图象不可能是轴对称图形. 设A(m,n)为函数f(x)=ax3+bx2图象的一个对称点,则f(m-x)+f(m+x)=2n对于x∈R恒成立.即a(m-x)3+b(m-x)2+a(m+x)3+b(m+x)2=2n对于x∈R恒成立,(3am+b)x2+(am3+bm2-n)=0 由,由解得 故函数f(x)图象的一个对称点为(-,).
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,且满足an+Sn=2.
(1)求数列{an}的通项公式;
(2)求证数列{an}中不存在任意三项按原来顺序成等差数列;
(3)若从数列{an}中依次抽取一个无限多项的等比数列,使它的所有项和S满足manfen5.com 满分网,这样的等比数列有多少个?
查看答案
设圆C1:x2+y2-10x-6y+32=0,动圆C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求证:圆C1、圆C2相交于两个定点;
(Ⅱ)设点P是椭圆manfen5.com 满分网上的点,过点P作圆C1的一条切线,切点为T1,过点P作圆C2的一条切线,切点为T2,问:是否存在点P,使无穷多个圆C2,满足PT1=PT2?如果存在,求出所有这样的点P;如果不存在,说明理由.
查看答案
某市物价局调查了某种治疗H1N1流感的常规药品在2009年每个月的批发价格和该药品在药店的销售价格,调查发现,该药品的批发价格按月份以12元/盒为中心价随某一正弦曲线上下波动,且3月份的批发价格最高为14元/盒,7月份的批发价格最低为10元/盒.该药品在药店的销售价格按月份以14元/盒为中心价随另一正弦曲线上下波动,且5月份的销售价格最高为16元/盒,9月份的销售价格最低为12元/盒.
(Ⅰ)求该药品每盒的批发价格f(x)和销售价格g(x)关于月份x的函数解析式;
(Ⅱ)假设某药店每月初都购进这种药品p盒,且当月售完,求该药店在2009年哪些月份是盈利的?说明你的理由.
查看答案
manfen5.com 满分网如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.
查看答案
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A轿车B轿车C
舒适型100xz
标准型300450600
已知在该月生产的轿车中随机抽一辆,抽到舒适型轿车B的概率为0.075,按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求x和z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.