满分5 >
高中数学试题 >
选修1:几何证明选讲 如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O...
选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.
考点分析:
相关试题推荐
对于定义在R上的函数f(x),可以证明点A(m,n)是f(x)图象的一个对称点的充要条件是f(m-x)+f(m+x)=2n,x∈R.
(1)求函数f(x)=x
3+3x
2图象的一个对称点;
(2)函数f(x)=ax
3+(b-2)x
2(a,b∈R)在R上是奇函数,求a,b满足的条件;并讨论在区间[-1,1]上是否存在常数a,使得f(x)≥-x
2+4x-2恒成立?
(3)试写出函数y=f(x)的图象关于直线X=M对称的充要条件(不用证明);利用所学知识,研究函数f(x)=ax
3+bx
2(a,b∈R)图象的对称性.
查看答案
已知数列{a
n}的前n项和为S
n,且满足a
n+S
n=2.
(1)求数列{a
n}的通项公式;
(2)求证数列{a
n}中不存在任意三项按原来顺序成等差数列;
(3)若从数列{a
n}中依次抽取一个无限多项的等比数列,使它的所有项和S满足
,这样的等比数列有多少个?
查看答案
设圆C
1:x
2+y
2-10x-6y+32=0,动圆C
2:x
2+y
2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求证:圆C
1、圆C
2相交于两个定点;
(Ⅱ)设点P是椭圆
上的点,过点P作圆C
1的一条切线,切点为T
1,过点P作圆C
2的一条切线,切点为T
2,问:是否存在点P,使无穷多个圆C
2,满足PT
1=PT
2?如果存在,求出所有这样的点P;如果不存在,说明理由.
查看答案
某市物价局调查了某种治疗H1N1流感的常规药品在2009年每个月的批发价格和该药品在药店的销售价格,调查发现,该药品的批发价格按月份以12元/盒为中心价随某一正弦曲线上下波动,且3月份的批发价格最高为14元/盒,7月份的批发价格最低为10元/盒.该药品在药店的销售价格按月份以14元/盒为中心价随另一正弦曲线上下波动,且5月份的销售价格最高为16元/盒,9月份的销售价格最低为12元/盒.
(Ⅰ)求该药品每盒的批发价格f(x)和销售价格g(x)关于月份x的函数解析式;
(Ⅱ)假设某药店每月初都购进这种药品p盒,且当月售完,求该药店在2009年哪些月份是盈利的?说明你的理由.
查看答案
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.
查看答案