满分5 > 高中数学试题 >

如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点...

manfen5.com 满分网如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.
(1)要证DM∥平面APC,只需证明MD∥AP(因为AP⊂面APC)即可. (2)在平面ABC内直线AP⊥BC,BC⊥AC,即可证明BC⊥面APC,从而证得平面ABC⊥平面APC; (3)因为BC=4,AB=20,求出三棱锥的高,即可求三棱锥D-BCM的体积. 证明:(I)由已知得,MD是△ABP的中位线 ∴MD∥AP∵MD⊄面APC,AP⊂面APC ∴MD∥面APC;(4分) (II)∵△PMB为正三角形,D为PB的中点 ∴MD⊥PB,∴AP⊥PB又∵AP⊥PC,PB∩PC=P ∴AP⊥面PBC(6分)∵BC⊂面PBC∴AP⊥BC 又∵BC⊥AC,AC∩AP=A∴BC⊥面APC,(8分) ∵BC⊂面ABC∴平面ABC⊥平面APC;(10分) (III)由题意可知,MD⊥面PBC, ∴MD是三棱锥D-BCM的高, ∴.(14分)
复制答案
考点分析:
相关试题推荐
已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,记y=f(x),
(1)求f(x)的解析表达式;
(2)若α角是一个三角形的最小内角,试求函数f(x)的值域.
查看答案
如图,是二次函数f(x)=x2-bx+a的部分图象,函数g(x)=lnx+f′(x)的零点所在的区间是manfen5.com 满分网,则整数k=   
manfen5.com 满分网 查看答案
如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则表上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)标5,点(-1,1)处标6,点(0,1)处标7,以此类推,则标签20092的格点的坐标为   
manfen5.com 满分网 查看答案
已知抛物线y2=-2px(p>0)的焦点F恰好是椭圆manfen5.com 满分网的左焦点,且两曲线的公共点的连线过F,则该椭圆的离心率为    查看答案
给出下列关于互不相同的直线m,n,l和平面α,β的四个命题:
(1)m⊂α,l∩α=A,点A∉m,则l与m不共面;
(2)l、m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
(3)若l⊂α,m⊂α,l∩m=点A,l∥β,m∥β,则α∥β;
(4)若l∥α,m∥β,α∥β,则l∥m
其中真命题是     (填序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.