满分5 > 高中数学试题 >

已知:以点为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O为原点, (1...

已知:以点manfen5.com 满分网为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O为原点,
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.
(1)求出半径,写出圆的方程,再解出A、B的坐标,表示出面积即可. (2)通过题意解出OC的方程,解出t 的值,直线y=-2x+4与圆C交于点M,N,判断t是否符合要求,可得圆的方程. 【解析】 (1)∵圆C过原点O, ∴, 设圆C的方程是, 令x=0,得, 令y=0,得x1=0,x2=2t ∴, 即:△OAB的面积为定值; (2)∵OM=ON,CM=CN, ∴OC垂直平分线段MN, ∵kMN=-2,∴, ∴直线OC的方程是, ∴,解得:t=2或t=-2, 当t=2时,圆心C的坐标为(2,1),, 此时C到直线y=-2x+4的距离, 圆C与直线y=-2x+4相交于两点, 当t=-2时,圆心C的坐标为(-2,-1),, 此时C到直线y=-2x+4的距离, 圆C与直线y=-2x+4不相交, ∴t=-2不符合题意舍去, ∴圆C的方程为(x-2)2+(y-1)2=5.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.
查看答案
已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,记y=f(x),
(1)求f(x)的解析表达式;
(2)若α角是一个三角形的最小内角,试求函数f(x)的值域.
查看答案
如图,是二次函数f(x)=x2-bx+a的部分图象,函数g(x)=lnx+f′(x)的零点所在的区间是manfen5.com 满分网,则整数k=   
manfen5.com 满分网 查看答案
如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则表上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)标5,点(-1,1)处标6,点(0,1)处标7,以此类推,则标签20092的格点的坐标为   
manfen5.com 满分网 查看答案
已知抛物线y2=-2px(p>0)的焦点F恰好是椭圆manfen5.com 满分网的左焦点,且两曲线的公共点的连线过F,则该椭圆的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.