满分5 > 高中数学试题 >

已知{an}为递增的等比数列,且{a1,a3,a5}⊂{-10,-6,-2,0,...

已知{an}为递增的等比数列,且{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.
(I)由{an}为递增的等比数列,得到数列{an}的公比q>0,且a1>0,又{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16},可得出a1,a3,a5三项,则公比可求,通项可求. (II)先假设存在等差数列{bn},由所给式子求出b1,b2,公差可求,通项可求,证明当bn=n时,a1bn+a2bn-1++an-1b2+anb1=2n+1-n-2对一切n∈N*都成立,用错位相减法求得此数列是适合的. 【解析】 (I)因为{an}是递增的等比数列,所以数列{an}公比q>0,首项a1>0, 又{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16}, 所以a1=1,a3=4,as=16(3分) 从而,q=2,an=a1qn-1=2n-1 所以数列{an}的通项公式为an=2n-1(6分) (II)假设存在满足条件的等整数列{bn},其公差为d,则当n=1时,a1b1=1, 又∵a1=1,∴b1=1; 当n=2时,a1b2+a2b1=4,b2+2b1=4,b2=2 则d=b2-b1=1,∴bn=b1+(n-1)d=1+(n-1)×1=n(8分) 以下证明当bn=n时,a1bn+a2bn-1++an-1b2+anb1=2n+1-n-2对一切n∈N*都成立. 设Sn=a1bn+a2bn-1+…+an-1b2+anb1, 即Sn=1×n+2×(n-1)+22×(n-2)+23×(n-3)+…+2n-2×2+2n-1×1,(1) 2Sn=2×n+22×(n-1)+23×(n-2)+…+2n-1×2+2n×1,(2) (2)-(1)得Sn=-n+2+22+23++2n-1+2n=, 所以存在等差数列{bn},bn=n使得a1bn+a2bn-1+a3bn-2+anb1=2n+1-n-2对一切n∈N*都成立(12分)
复制答案
考点分析:
相关试题推荐
已知抛物线C1的方程为y=ax2(a>0),圆C2的方程为x2+(y+1)2=5,直线l1:y=2x+m(m<0)是C1、C2的公切线.F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点的C1的切线l交y轴于点B,设manfen5.com 满分网,证明:点M在一定直线上.

manfen5.com 满分网 查看答案
设函数manfen5.com 满分网,其中a为常数.
(1)证明:对任意a∈R,y=f(x)的图象恒过定点;
(2)当a=-1时,判断函数y=f(x)是否存在极值?若存在,证明你的结论并求出所有极值;若不存在,说明理由.
查看答案
manfen5.com 满分网一个多面体的直观图和三视图(主视图、左视图、俯视图)如图所示,M、N分别为A1B、B1C1的中点.
(Ⅰ)求证:MN∥平面ACC1A1
(Ⅱ)求证:MN⊥平面A1BC.
查看答案
设函数f(x)=msinx+cosx(x∈R)的图象经过点manfen5.com 满分网
(Ⅰ)求y=f(x)的解析式,并求函数的最小正周期和单调递增区间
(Ⅱ)若manfen5.com 满分网,其中A是面积为manfen5.com 满分网的锐角△ABC的内角,且AB=2,求AC和BC的长.
查看答案
已知命题p:m+2<0,命题q:方程x2+mx+1=0无实数根.若“¬p”为假,“p∧q”为假命题,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.