满分5 > 高中数学试题 >

A={(x,y)|x+y=0,x,y∈R},B={(x,y)|x-y-2=0,x...

A={(x,y)|x+y=0,x,y∈R},B={(x,y)|x-y-2=0,x,y∈R},则集合A∩B=( )
A.(1,-1)
B.{x=1}∪{y=-1}
C.{1,-2}
D.{1,-1}
利用两个集合的交集的定义,,求出两直线的交点坐标,可得A∩B. 【解析】 ∵A={(x,y)|x+y=0,x,y∈R },B={(x,y)|x-y-2=0,x,y∈R,} ∴={(x,y)|x=1,y=-1 }={(1,-1)},   故 选D.
复制答案
考点分析:
相关试题推荐
已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的余弦值;
(2)设点P在线段GH上,且manfen5.com 满分网,试确定λ的值,使得C1P的长度最短.

manfen5.com 满分网 查看答案
已知在二阶矩阵M对应变换的作用下,四边形ABCD变成四边形A′B′C′D′,其中A(1,1),B(-1,1),C(-1,-1),A′(3,-3),B′(1,1),D′(-1,-1).
(1)求出矩阵M;
(2)确定点D及点C′的坐标.
查看答案
已知函数f(x)=x(x-a)2,g(x)=-x2+(a-1)x+a(其中a为常数);
(1)如果函数y=f(x)和y=g(x)有相同的极值点,求a的值;
(2)设a>0,问是否存在manfen5.com 满分网,使得f(x)>g(x),若存在,请求出实数a的取值范围;若不存在,请说明理由.
(3)记函数H(x)=[f(x)-1]•[g(x)-1],若函数y=H(x)有5个不同的零点,求实数a的取值范围.
查看答案
已知各项均为整数的数列{an}满足:a9=-1,a13=4,且前12项依次成等差数列,从第11项起依次成等比数列.
(1)求数列{an}的通项公式;
(2)若存在正整数m、p使得:am+am+1+…+am+p=amam+1…am+p,请找出所有的有序数对(m,p),并证明你的结论.
查看答案
已知椭圆C的方程为manfen5.com 满分网,点A、B分别为其左、右顶点,点F1、F2分别为其左、右焦点,以点A为圆心,AF1为半径作圆A;以点B为圆心,OB为半径作圆B;若直线manfen5.com 满分网被圆A和圆B截得的弦长之比为manfen5.com 满分网
(1)求椭圆C的离心率;
(2)己知a=7,问是否存在点P,使得过P点有无数条直线被圆A和圆B截得的弦长之比为manfen5.com 满分网;若存在,请求出所有的P点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.