满分5 > 高中数学试题 >

已知集合A={(x,y)|x+y=0,x,y∈R};B=[(x,y)|x-y=0...

已知集合A={(x,y)|x+y=0,x,y∈R};B=[(x,y)|x-y=0,x,y∈R],则集合A∩B=( )
A.(0,0)
B.x=0∪y=0
C.0
D.{(0,0)}
观察已知条件发现,两集合都为点集,要求两集合的交集只需求出两集合中直线的交点坐标即可,所以联立两集合中的直线方程,得到关于x与y的二元一次方程组,求出方程组的解即可得到两直线的交点坐标,由交点坐标组成的集合即为两集合的交集. 【解析】 联立两集合中的方程得:, ①+②得:2x=0,解得x=0,把x=0代入①,解得y=0, ∴方程组的解为, 则集合A∩B={(0,0)}. 故选D
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在实数λ,使得数列manfen5.com 满分网为等差数列?若存在,求出λ的值;若不存在,则说明理由.
(Ⅲ)求证:manfen5.com 满分网
查看答案
已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网,左、右焦点分别为F1、F2,点manfen5.com 满分网满足F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)如果圆E:manfen5.com 满分网被椭圆C所覆盖,求圆的半径r的最大值.
查看答案
已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(I)求函数y=f(x)的表达式;
(II)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数g(x)=f(x-m)+4m(m>0)在区间[m-3,n]上的值域为[-4,16],试求m、n应满足的条件.
查看答案
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)证明:AD⊥D1F;
(2)证明:面AED⊥面A1FD1
(3)设manfen5.com 满分网

manfen5.com 满分网 查看答案
从某学校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160).第二组[160,165);…第八组[190,195],图是按上述分组方法得到的条形图.

manfen5.com 满分网
(1)根据已知条件填写下面表格:
组 别12345678
样本数
(2)估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数;
(3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.