满分5 > 高中数学试题 >

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn...

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<manfen5.com 满分网(n≥1).
(Ⅰ)由题意知an=an-1+2n-1(n≥3)(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n+1. (Ⅱ)由于=.故Tn=b1f(1)+b2f(2)+…+bnf(n) =,由此可证明Tn=b1f(1)+b2f(2)+…+bnf(n)<(n≥1). 【解析】 (Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3) 即an=an-1+2n-1(n≥3) ∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2 =2n-1+2n-2+…+22+5 =2n+1(n≥3) 检验知n=1、2时,结论也成立,故an=2n+1. (Ⅱ)由于 = =. 故Tn=b1f(1)+b2f(2)+…+bnf(n) = =.
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c分别为角A、B、C的对边,manfen5.com 满分网,a=3,△ABC的面积为6,D为△ABC内任一点,点D到三边距离之和为d.
(1)角A的正弦值;           
(2)求边b、c;       
(3)求d的取值范围.
查看答案
已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a<b,则manfen5.com 满分网的最小值是    查看答案
已知函数y=f(x)是R上的偶函数,对任意x∈R,都有f(x+4)=f(x)+f(2)成立,当x1,x2∈[0,2]且x1≠x2时,都有manfen5.com 满分网给出下列命题:
(1)f(2)=0且T=4是函数f(x)的一个周期;
(2)直线x=4是函数y=f(x)的一条对称轴;
(3)函数y=f(x)在[-6,-4]上是增函数;
(4)函数y=f(x)在[-6,6]上有四个零点.
其中正确命题的序号是     (填上你认为正确的所有序号) 查看答案
第26届世界大学生夏季运动会将于2011年8月12日到23日在中国广东举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.若从所有“高个子”
中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,则ξ的数学期望是   
manfen5.com 满分网 查看答案
设直角三角形的两直角边的长分别为a,b,斜边长为c,斜边上的高为h,则有a+b<c+h成立,某同学通过类比得到如下四个结论:①a2+b2>c2+h2;②a3+b3<c3+h3;③a4+b4>c4+h4;④a5+b5<c5+h5
其中正确结论的序号是    ;进一步类比得到的一般结论是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.