满分5 > 高中数学试题 >

已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根...

已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且manfen5.com 满分网
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)记cn=an•bn,求数列{cn}的前n项和Tn
(Ⅰ)由已知可得,且a5>a3,联立方程解得a5,a3,进一步求出数列{an}通项,数列{bn}中,利用递推公式 (Ⅱ)用错位相减求数列{cn}的前n和 【解析】 (Ⅰ)∵a3,a5是方程x2-14x+45=0的两根,且数列{an}的公差d>0, ∴a3=5,a5=9,公差 ∴an=a5+(n-5)d=2n-1.(3分) 又当n=1时,有 ∴ 当 ∴数列{bn}是首项,公比等比数列, ∴(6分) (Ⅱ)由(Ⅰ)知,则(1) ∴=(2)(10分) (1)-(2)得:= 化简得:(12分)
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD的底面是平行四边形,PA⊥平面ABCD,AC⊥AB,AB=PA,点E是PD上的点,且manfen5.com 满分网(0<λ≤1).
(Ⅰ) 求证:PB⊥AC;
(Ⅱ) 求λ的值,使PB∥平面ACE;
(Ⅲ)当λ=1时,求二面角E-AC-B的大小.

manfen5.com 满分网 查看答案
某种项目的射击比赛,开始时选手在距离目标100m处射击,若命中则记3分,且停止射击.若第一次射击未命中,可以进行第二次射击,但需在距离目标150m处,这时命中目标记2分,且停止射击.若第二次仍未命中,还可以进行第三次射击,此时需在距离目标200m处,若第三次命中则记1分,并停止射击.若三次都未命中则记0分,并停止射击.已知选手甲的命中率与目标的距离的平方成反比,他在100m处击中目标的概率为manfen5.com 满分网,且各次射击都相互独立.
(Ⅰ)求选手甲在三次射击中命中目标的概率;
(Ⅱ)设选手甲在比赛中的得分为ξ,求ξ的分布列和数学期望.
查看答案
在△ABC中,设A、B、C的对边分别为a、b、c,向量manfen5.com 满分网=(cosA,sinA),manfen5.com 满分网=(manfen5.com 满分网),若|manfen5.com 满分网|=2.(1)求角A的大小;(2)若manfen5.com 满分网的面积.
查看答案
A.不等式manfen5.com 满分网的解集是   
B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2manfen5.com 满分网,若∠CAP=30°,则⊙O的直径AB=   
C.(极坐标系与参数方程选做题)若圆C:manfen5.com 满分网与直线x-y+m=0相切,则m=   
manfen5.com 满分网 查看答案
给出以下四个命题:
①若manfen5.com 满分网,则manfen5.com 满分网
②简单随机抽样、系统抽样、分层抽样的共同特点是:抽样过程中每个个体被抽到的机会均等;
③正弦函数y=sinx在第一象限是增函数;
④若数列an=n2+λn(n∈N+)为单调递增数列,则λ取值范围是λ>-3;
其中正确命题的序号为    .(写出所有你认为正确的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.