在直角坐标系xOy中,点M到点F
1、F
2的距离之和是4,点M的轨迹是C,直线l:
与轨迹C交于不同的两点P和Q.
(Ⅰ)求轨迹C的方程;
(Ⅱ)是否存在常数k,使以线段PQ为直径的圆过原点O?若存在,求出k的值;若不存在,请说明理由.
考点分析:
相关试题推荐
某市2009年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长5%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.以2009年为第一年,那么,到哪一年底,
(Ⅰ)该市历年所建中低价房的累计面积将首次不少于4750万平方米?
(Ⅱ)所有建造的中低价房的面积占建造总住房面积的比例首次大于75%?
(附:可参考数据:1.05
2=1.103,1.05
3=1.158,1.05
4=1.216,1.05
5=1.276;1.05
6=1.340)
查看答案
如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=2AD.
(1)求证:AB⊥PD;
(2)若点E是线段PB的中点,求证:AE∥平面PCD.
查看答案
从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165);…第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.
查看答案
已知向量
,其中(x∈R,ω>0),函数
的最小正周期为π,最大值为3.
(I)求ω和常数a的值;
(Ⅱ)求函数f(x)的单调递增区间.
查看答案
设函数y=f(x)在(a,b)上的导函数为f'(x),f'(x)在(a,b)上的导函数为f''(x),若在(a,b)上,f''(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知
.
(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,则实数m=
(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,则b-a的最大值为
.
查看答案