满分5 > 高中数学试题 >

已知函数. (I)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方...

已知函数manfen5.com 满分网
(I)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)当manfen5.com 满分网时,讨论f(x)的单调性.
(I)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. (II)利用导数来讨论函数的单调性即可,具体的步骤是:(1)确定 f(x)的定义域;(2)求导数fˊ(x);(3)在函数 的定义域内解不等式fˊ(x)>0和fˊ(x)<0;(4)确定 的单调区间.若在函数式中含字母系数,往往要分类讨论. 【解析】 (I)当a=-1时,f(x)=lnx+x+-1,x∈(0,+∞), 所以f′(x)=+1-,因此,f′(2)=1, 即曲线y=f(x)在点(2,f(2))处的切线斜率为1, 又f(2)=1n2+2,y=f(x)在点(2,f(2))处的切线方程为y-(ln2+2)=x-2, 所以曲线,即x-y+ln2=0; (Ⅱ)因为, 所以=,x∈(0,+∞), 令g(x)=ax2-x+1-a,x∈(0,+∞), (1)当a=0时,g(x)=-x+1,x∈(0,+∞), 所以,当x∈(0,1)时,g(x)>0, 此时f′(x)<0,函数f(x)单调递减; (2)当a≠0时,由g(x)=0, 即ax2-x+1-a=0,解得x1=1,x2=-1. ①当a=时,x1=x2,g(x)≥0恒成立, 此时f′(x)≤0,函数f(x)在(0,+∞)上单调递减; ②当0<a<时, x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减, x∈(1,-1)时,g(x)<0,此时f′(x)>0,函数f(x)单调递增, x∈(-1,+∞)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减; ③当a<0时,由于-1<0, x∈(0,1)时,g(x)>0,此时f′(x)<0函数f(x)单调递减; x∈(1,∞)时,g(x)<0此时函数f′(x)>0函数f(x)单调递增. 综上所述: 当a≤0时,函数f(x)在(0,1)上单调递减; 函数f(x)在(1,+∞)上单调递增 当a=时,函数f(x)在(0,+∞)上单调递减 当0<a<时,函数f(x)在(0,1)上单调递减; 函数f(x)在(1,-1)上单调递增; 函数f(x)在(-1,+∞)上单调递减.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=sin(π-ωx)cosωx+cos2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在区间manfen5.com 满分网上的最小值.
查看答案
已知{an}为等差数列,且a3=-6,a6=0.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的前n项和公式.
查看答案
(北京卷文15)已知函数f(x)=2cos2x+sin2x
(Ⅰ)求f(manfen5.com 满分网)的值;
(Ⅱ)求f(x)的最大值和最小值.
查看答案
已知函数manfen5.com 满分网,则满足不等式f(1-x2)>f(2x)的x的范围是    查看答案
在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若manfen5.com 满分网(a、b∈R),则a、b满足的一个等式是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.