满分5 > 高中数学试题 >

在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2...

在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(Ⅰ) 求证:AB∥平面DEG;
(Ⅱ) 求证:BD⊥EG;
(Ⅲ) 求二面角C-DF-E的余弦值.

manfen5.com 满分网
(Ⅰ) 先证明四边形ADGB是平行四边形,可得AB∥DG,从而证明AB∥平面DEG. (Ⅱ) 过D作DH∥AE交EF于H,则DH⊥平面BCFE,DH⊥EG,再证BH⊥EG,从而可证EG⊥平面BHD,故BD⊥EG. (Ⅲ)分别以 EB、EF、EA为x轴、y轴、z轴,建立空间坐标系,由已知得是平面EFDA的法向量. 求出平面DCF的法向量为n=(x,y,z),则由求得 二面角C-DF-E的余弦值. 【解析】 (Ⅰ)证明:∵AD∥EF,EF∥BC,∴AD∥BC.  又∵BC=2AD,G是BC的中点,∴, ∴四边形ADGB是平行四边形,∴AB∥DG.∵AB⊄平面DEG,DG⊂平面DEG,∴AB∥平面DEG. (Ⅱ)证明:∵EF⊥平面AEB,AE⊂平面AEB,∴EF⊥AE,又AE⊥EB,EB∩EF=E,EB,EF⊂平面BCFE, ∴AE⊥平面BCFE. 过D作DH∥AE交EF于H,则DH⊥平面BCFE.∵EG⊂平面BCFE,∴DH⊥EG. ∵AD∥EF,DH∥AE,∴四边形AEHD平行四边形,∴EH=AD=2,∴EH=BG=2,又EH∥BG,EH⊥BE, ∴四边形BGHE为正方形,∴BH⊥EG. 又BH∩DH=H,BH⊂平面BHD,DH⊂平面BHD,∴EG⊥平面BHD. ∵BD⊂平面BHD,∴BD⊥EG. (Ⅲ)分别以 EB、EF、EA为x轴、y轴、z轴,建立空间坐标系,由已知得 是平面EFDA的法向量.设平面DCF的法向量为n=(x,y,z),∵, ∴,即,令z=1,得n=(-1,2,1). 设二面角C-DF-E的大小为θ, 则,∴二面角C-DF-E的余弦值为.
复制答案
考点分析:
相关试题推荐
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.
(1)求甲,乙两组各抽取的人数;
(2)求从甲组抽取的工人中恰有1名女工的概率;
(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望、
查看答案
在数列{an}中,a1=-14,3an-an-1=4n(n≥2,n∈N*).
(I)求证:数列{an-2n+1}是等比数列;
(II)设数列{an}的前n项和为Sn,求Sn的最小值.
查看答案
在极坐标系中,圆C的极坐标方程为ρ=2sinθ,过极点的一条直线l与圆相交于O,A两点,且∠AOX=45°,则OA=    查看答案
(选做题)(几何证明选讲)如图,正△ABC的边长为2,点M,N分别是边AB,AC的中点,直线MN与△ABC的外接圆的交点为P、Q,则线段PM=   
manfen5.com 满分网 查看答案
给出下列命题:
①y=x2是幂函数        
②函数f(x)=2x-x2的零点有2个
manfen5.com 满分网展开式的项数是6项
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是manfen5.com 满分网
⑤若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2
其中真命题的序号是    (写出所有正确命题的编号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.