满分5 > 高中数学试题 >

已知函数f(x)=-x3+ax2-4(a∈R),f′(x)是f(x)的导函数. ...

已知函数f(x)=-x3+ax2-4(a∈R),f′(x)是f(x)的导函数.
(1)当a=2时,对于任意的m∈[-1,1],n∈[-1,1]求f(m)+f′(n)的最小值;
(2)若存在x∈(0,+∞),使f(x)>0求a的取值范围.
(1)欲求f(m)+f′(n)的最小值,就分别求f(m)、f′(n)的最小值 (2)存在x∈(0,+∞),使f(x)>0即寻找f(x)max>0是变量a的范围. 【解析】 (1)由题意知f(x)=-x3+2x2-4,f′(x)=-3x2+4x 令f′(x)=0,得x=0或 当x在[-1,1]上变化时,f(x),f′(x)随x的变化情况如下表: ∴对于m∈[-1,1],f(m)的最小值为f(0)=-4, ∵f′(x)=-3x2+4x的对称轴为且抛物线开口向下 ∴对于n∈[-1,1],f′(n)的最小值为f′(-1)=-7, ∴f(m)+f′(n)的最小值为-11. (2)∵f′(x)=-3x(x-) ①若a≤0,当x>0,时f′(x)<0 ∴f(x)在[0,+∞)上单调递减,又f(0)=-4,则当x>0时,f(x)<-4∴当a≤0时,不存在x>0,使f(x)>0 ②若a>0,则当0<x<时,f′(x)>0, 当x>时,f′(x)<0从而f(x)在(0,]上单调递增,在[,+∞)上单调递减, ∴当x∈(0,+∞)时,f(x)max=f()= 根据题意,,即a3>27,解得a>3 综上,a的取值范围是(3,+∞)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,四棱锥P-ABCD的底面为矩形,PA=AD=1,PA⊥面ABCD,E是AB的中点,F为PC上一点,且
EF∥面PAD.
(I)证明:F为PC的中点;
(II)若AB=2,求二面角C-PD-E的平面角的余弦值.
查看答案
如图,某学校要用鲜花布置花圃中ABCDE五个不同区域,要求同一区域上用一种颜色的鲜花,相邻区域使用不同颜色的鲜花,现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.
(I)求恰有两个区域用红色鲜花的概率;
(II)当A、D区域同时用红色鲜花时,求布置花圃的不同方法的种数.

manfen5.com 满分网 查看答案
设{an}为等差数列,{bn}为各项均为正数的等比数列,a1=b1=1,a2+a4=b3,b2b4=a3
(I)求{an}的通项公式;
(II)求{bn}的前10项的和T10
查看答案
如图,在△ABC中;角A、B、C所对的边分别是a、b、c,且a=manfen5.com 满分网,b=2,c=3,O为△ABC的外心.
(I)求△ABC的面积;
(II)求manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
已知有下列四个命题:
①若a、b∈R且a+b=2,则manfen5.com 满分网的最小值为2;
②函数f(x)=2x-x2在(-∞,0)是增函数;
③若f(x)在R上恒有f(x+2)•f(x)=1.则4为f(x)的一个周期;
④函数y=2cos2x+sin2x的最小值为manfen5.com 满分网+1.正确命题是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.