满分5 > 高中数学试题 >

已知函数在x=1处取得极值2. (1)求函数f(x)的表达式; (2)当m满足什...

已知函数manfen5.com 满分网在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)若P(x,y)为manfen5.com 满分网图象上任意一点,直线l与manfen5.com 满分网的图象切于点P,求直线l的斜率k的取值范围.
(1)由函数在x=1处取得极值2可得f(x)=2,f′(1)=0求出a和b确定出f(x)即可; (2)令f′(x)>0求出增区间得到m的不等式组求出解集即可; (3)找出直线l的斜率k=f′(x),利用换元法求出k的最小值和最大值即可得到k的范围. 【解析】 (1)因, 而函数在x=1处取得极值2, 所以⇒⇒ 所以; (2)由(1)知, 如图,f(x)的单调增区间是[-1,1], 所以,⇒-1<m≤0, 所以当m∈(-1,0]时,函数f(x)在区间(m,2m+1)上单调递增. (3)由条件知,过f(x)的图形上一点P的切线l的斜率k为:= 令,则t∈(0,1],此时, 根据二次函数的图象性质知: 当时,kmin=,当t=1时,kmax=4 所以,直线l的斜率k的取值范围是.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网(a、b为常数且a≠0)满足f(2)=1且f(x)=x有唯一解.
(1)求f(x)的表达式;
(2)记xn=f(xn-1)(n∈N且n>1),且x1=f(1),求数列{xn}的通项公式.
(3)记 yn=xn•xn+1,数列{yn}的前n项和为Sn,求证Snmanfen5.com 满分网
查看答案
如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥平面BCE;
(2)求二面角B-AC-E的正弦值;
(3)求三棱锥E-ACD的体积.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(0,x),manfen5.com 满分网=(1,1),manfen5.com 满分网=(x,0),manfen5.com 满分网=(y2,1)(其中x,y是实数),又设向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网,点P(x,y)的轨迹为曲线C.
(1)求曲线C的方程;
(2)设曲线C与y轴的正半轴的交点为M,过点M作一条直线l与曲线C交于另一点N,当|MN|=manfen5.com 满分网时,求直线 l 的方程.
查看答案
先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,
(1)求点P(x,y)在直线y=x-1上的概率;
(2)求点P(x,y)满足y2<4x的概率.
查看答案
已知函数f(x)=sinmanfen5.com 满分网cosmanfen5.com 满分网+manfen5.com 满分网-manfen5.com 满分网
(1)求f(x)的最小正周期及其对称中心;
(2)如果三角形ABC的三边 a.b.c 满足b2=ac,且边b所对角为 x,试求x的范围及此时函数f(3x)的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.