设函数
(a∈R),函数g(x)的图象与函数f(x)的图象关于点A(1,2)对称.
(1)求函数g(x)的解析式;
(2)若关于x的方程g(x)=a有且仅有一个实数解,求a的值,并求出方程的解;
(3)若函数f(x)在区间[2,+∞)上是增函数,求a的取值范围.
考点分析:
相关试题推荐
已知函数f(x)=x
2+m,其中m∈R,定义数列{a
n}如下:a
1=0,a
n+1=f(a
n),n∈N*.
(1)当m=1时,求a
2,a
3,a
4的值;
(2)是否存在实数m,使a
2,a
3,a
4构成公差不为0的等差数列?若存在,求出实数m的值,并求出等差数列的公差;若不存在,请说明理由.
(3)若正数数列{b
n}满足:b
1=1,
(n∈N*),S
n为数列{b
n}的前n项和,求使S
n>2010成立的最小正整数n的值.
查看答案
为了在夏季降温和冬季供暖时减少能源消耗,可在建筑物的外墙加装不超过10厘米厚的隔热层.某幢建筑物要加装可使用20年的隔热层.每厘米厚的隔热层的加装成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:厘米)满足关系:C(x)=
.若不加装隔热层,每年能源消耗费用为8万元.设f(x)为隔热层加装费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式,并写f(x)=的定义域;
(2)隔热层加装厚度为多少厘米时,总费用f(x)=最小?并求出最小总费用.
查看答案
已知向量
,
.
(1)求满足
⊥
的实数x的集合;
(2)设函数
,求f(x)在
时的值域.
查看答案
如图,△ABC中,∠ACB=90°,∠ABC=30°,
,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),求图中阴影部分绕直线BC旋转一周所得旋转体的体积.
查看答案
设n∈N
+,关于n的函数f(n)=(-1)
n-1•n
2,若a
n=f(n)+f(n+1),则数列{a
n}前100项的和a
1+a
2+a
3+…+a
100=
.
查看答案