为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
考点分析:
相关试题推荐
设复数z=-3cosθ+2isinθ
(1)当
时,求|z|的值;
(2)若复数z所对应的点在直线x+3y=0上,求
的值.
查看答案
若四棱锥P-ABCD的底面是边长为2的正方形,PA⊥底面ABCD(如图),且
.
(1)求异面直线PD与BC所成角的大小;
(2)求四棱锥P-ABCD的体积.
查看答案
如图,连接△ABC的各边中点得到一个新的△A
1B
1C
1,又△A
1B
1C
1的各边中点得到一个新的△A
2B
2C
2,如此无限继续下去,得到一系列三角形,△A
1B
1C
1,△A
2B
2C
2,△A
3B
3C
3,…这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是( )
A.(
,
)
B.(
,1)
C.(
,1)
D.(1,
)
查看答案
已知a=(-3,2),b=(-1,0),向量λa+b与a-2b垂直,则实数λ的值为( )
A.-
B.
C.-
D.
查看答案
(文)函数
的图象关于原点对称的充要条件是( )
A.φ=2kπ-
,k∈Z
B.φ=kπ-
,k∈Z
C.φ=2kπ-
,k∈Z
D.φ=kπ-
,k∈Z
查看答案