登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知an为等比数列且首项为1,公比为,证明.
已知a
n
为等比数列且首项为1,公比为
,证明
.
首先由已知数列的首项及公比,可得到数列的通项,再求出前n项和,再求极限即可. 【解析】 首先已知an为等比数列且首项为1,公比为, 可以求得=, 所以求极限得: 即得证.
复制答案
考点分析:
相关试题推荐
已知直线l:x-ny=0(n∈N*),圆M:(x+1)
2
+(y+1)
2
=1,抛物线φ:y=(x-1)
2
,又l与M交于点A、B,l与φ交于点C、D,求
.
查看答案
在边长为a的正方形ABCD中内依次作内接正方形A
i
B
i
C
i
D
i
(i=1,2,3,…),使内接正方形与相邻前一个正方形的一边夹角为a,求所有正方形的面积之和.
查看答案
设数列a
1
,a
2
,…,a
n
,…的前n项的和S
n
与a
n
的关系是
,其中b是与n无关的常数,且b≠-1.
(1)求a
n
和a
n-1
的关系式;
(2)写出用n和b表示a
n
的表达式;
(3)当0<b<1时,求极限
.
查看答案
已知数列{b
n
}是等差数列,b
1
=1,b
1
+b
2
+…+b
10
=145.
(1)求数列{b
n
}的通项b
n
;
(2)设数列{a
n
}的通项a
n
=log
a
(1+
)(其中a>0,且a≠1),记S
n
是数列{a
n
}的前n项和.试比较S
n
与
log
a
b
n+1
的大小,并证明你的结论.
查看答案
若数列{a
n
}满足对任意的n有:S
n
=
,试问该数列是怎样的数列?并证明你的结论.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.