满分5 > 高中数学试题 >

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的...

已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+manfen5.com 满分网=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足manfen5.com 满分网(O为坐标原点),当|manfen5.com 满分网-manfen5.com 满分网|<manfen5.com 满分网时,求实数t取值范围.
(Ⅰ)由题意知,所以.由此能求出椭圆C的方程. (Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2-8k2x+8k2-2=0再由根的判别式和嘏达定理进行求解. 【解析】 (Ⅰ)由题意知,所以. 即a2=2b2.(2分) 又因为,所以a2=2,. 故椭圆C的方程为.(4分) (Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y), 由得(1+2k2)x2-8k2x+8k2-2=0.△=64k4-4(2k2+1)(8k2-2)>0,.(6分) ,∵∴(x1+x2,y1+y2)=t(x,y), ∴, ∵点P在椭圆上,∴,∴16k2=t2(1+2k2).(8分) ∵<,∴,∴ ∴,∴(4k2-1)(14k2+13)>0,∴.(10分) ∴,∵16k2=t2(1+2k2),∴, ∴或,∴实数t取值范围为.(12分)
复制答案
考点分析:
相关试题推荐
设函数f(x)=x|x-1|+m,g(x)=lnx.
(1)当m>1时,求函数y=f(x)在[0,m]上的最大值;
(2)记函数p(x)=f(x)-g(x),若函数p(x)有零点,求m的取值范围.
查看答案
如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.
(1)求证:AC∥平面BEF;
(2)求四面体BDEF的体积.

manfen5.com 满分网 查看答案
已知数列{an}的前n项和Sn满足manfen5.com 满分网(P为常数,且P≠0,P≠1,n∈N+),数列{bn}是等比数列,且manfen5.com 满分网
(1)求{an}的通项公式;
(2)求P的值.
查看答案
某校高三某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题:
manfen5.com 满分网
(1)求分数在[50,60)的频率及全班的人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份在[90,100]之间的概率.
查看答案
已知向量manfen5.com 满分网=(sinθ,2),manfen5.com 满分网=(cosθ,1),且manfen5.com 满分网manfen5.com 满分网,其中manfen5.com 满分网
(1)求sinθ和cosθ的值;
(2)若manfen5.com 满分网,求cosω的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.