满分5 > 高中数学试题 >

已知函数f(x)=ln(x+1)+ax. (1)当x=0时,函数f(x)取得极大...

已知函数f(x)=ln(x+1)+ax.
(1)当x=0时,函数f(x)取得极大值,求实数a的值;
(2)若存在x∈[1,2],使不等式f′(x)≥2x成立,其中f′(x)为f(x)的导函数,求实数a的取值范围;
(3)求函数f(x)的单调区间.
(1)求出f′(x),因为x=0时函数取得极大值,所以f′(0)=0,化简即可求出a的值,把a的值代入f(x)中检验,方法是在函数的定义域范围内,讨论导函数的正负得到函数的单调区间,根据函数的增减性即可得到x=0处取得极大值;(2)把f′(x)的解析式代入f′(x)≥2x中,解得a大于等于2x-,设g(x)=2x-,求出g(x)的最大值,即可求出a的范围,方法是求出g′(x),得到g′(x)大于0即函数在[1,2]为增函数,所以g(x)的最大值为g(2),列出关于a的不等式,求出解集即可得到a的取值范围;(3)求出f′(x)=0时x的值,分a大于等于0和a小于0两种情况在函数的定义域内,讨论导函数的正负即可得到函数的单调区间. 【解析】 (1)f′(x)=+a 由f′(0)=0,得a=-1,此时f′(x)=-1. 当x∈(-1,0)时,f′(x)>0,函数f(x)在区间(-1,0)上单调递增; 当x∈(0,+∞)时,f′(x)<0,函数f(x)在区间(0,+∞)上单调递减; ∴函数f(x)在x=0处取得极大值,故a=-1. (2)∵f′(x)≥2x,∴+a≥2x,∴a≥2x-. 令g(x)=2x-(1≤x≤2), ∴g′(x)=2+>0,∴g(x)在[1,2]上是增函数, ∴a≥g(1)=.存在x∈[1,2],使不等式f′(x)≥2x成立. (3)f′(x)=+a. ∵>0, ∴当a≥0时,f′(x)>0,函数f(x)在(-1,+∞)上是增函数. 当a<0时,令f′(x)=0,x=--1; 若x∈(-1,--1)时,f′(x)>0, 若x∈(--1,+∞)时,f′(x)<0; 综上,当a≥0时,函数f(x)递增区间是(-1,+∞); 当a<0时,函数f(x)递增区间是:(-1,--1),递减区间是:(--1,+∞).
复制答案
考点分析:
相关试题推荐
已知两点A、B分别在直线y=x和y=-x上运动,且manfen5.com 满分网,动点P满足manfen5.com 满分网(O为坐标原点),点P的轨迹记为曲线C.
(1)求曲线C的方程;
(2)过曲线C上任意一点作它的切线l,与椭圆manfen5.com 满分网交于M、N两点,求证:manfen5.com 满分网为定值.
查看答案
manfen5.com 满分网图为一简单集合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)画出该几何体的三视图;
(2)求四棱锥B-CEPD的体积;
(3)求证:BE∥平面PDA.
查看答案
manfen5.com 满分网某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率.
查看答案
在△ABC中,a、b、c分别为内角A、B、C的对边,且b2+c2-a2=bc.
(1)求角A 的大小;
(2)设函数manfen5.com 满分网时,若manfen5.com 满分网,求b的值.
查看答案
在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),则S100=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.